磁盘满了对日志打印(Logback)的影响

背景

我们生产环境有一个服务半夜报警:磁盘剩余空间不足10%,请及时处理。排查后发现是新上线的一个功能,日志打太多导致的,解决方法有很多,就不赘述了。领导担心报警不及时、或者报警遗漏,担心磁盘满了对线上业务有负面影响,甚至不可用,令我研究一下该情况下对服务的影响。

正文

注:我们线上的应用使用Logback日志框架进行打印,所以log4j、log4j2或其它日志框架不在本次研究的范围。

实验研究

实验步骤

  1. 启动服务,观察各项指标正常(模拟正常工作的服务以及环境状态)
  2. 将磁盘写满
  3. 观察应用服务、宿主机各项指标,查看服务响应是否正常(包括功能以及性能)
  4. 将大文件删除(恢复)
  5. 重复第3步

实验过程

第1、3、5步重在观测,不赘述。

第2步的模拟磁盘写满,使用linux的fallocate命令。

将磁盘写满的方式如下有几种:

  1. 自己写文件,写满为止,速度较慢,有开发(写脚本)成本
  2. 使用dd命令,但是比较慢,取决于磁盘的速度
  3. 使用truncate命令,但是该命令操作的结果并不占用实际的磁盘空间
  4. 使用fallocate命令,fallocate -l {size} {fileName},如fallocate -l 20G text1

我选择了方式4,很快就写满了磁盘

验证方式:vim {xxx},进入文件编辑,写入任意内容,保存失败并提示:Can’t open file for writing(No space left on device)

实验结果

  1. 磁盘写满前、后,应用服务各项指标均正常(功能、性能)
  2. 磁盘写满后,服务器磁盘空间报警(无可用空间),删除文件后报警恢复
  3. 磁盘写满后,应用日志停止打印,删除文件后应用日志恢复打印

即,磁盘满了对于使用logback日志框架的应用,并不会造成影响。

实验结果令人诧异,按正常理解,磁盘满了之后再写入,会报No space left on device异常,进而影响到应用程序的功能。

原理分析

logback配置文件里的文件appender如下(RollingFileAppender同理):

<appender name="FILE" class="ch.qos.logback.core.FileAppender"><file>${LOG_HOME}/${APP_NAME}.log</file><encoder><pattern>%d{yyyy-MM-dd HH:mm:ss} [%thread] %-5level %logger{36} - %msg%n</pattern></encoder>
</appender>

把关注点放到appender即可,因为最终的日志输出是由appender控制的:它控制写在哪个文件里,格式是怎样的,滚动策略又是怎样的。

通过IDEA查看RollingFileAppender的继承关系如下下示:

在这里插入图片描述

将视线聚焦到ch.qos.logback.core.OutputStreamAppender#writeBytes,代码如下:

private void writeBytes(byte[] byteArray) throws IOException {if(byteArray == null || byteArray.length == 0)return;lock.lock();try {this.outputStream.write(byteArray);if (immediateFlush) {this.outputStream.flush();}} finally {lock.unlock();}
}

由上可知,写日志时会加锁,避免资源竞争,然后通过outputStream写出,接着马上刷盘(默认情况)。

这里的outputStream可了不得,是个ResilientFileOutputStream实例,顾名思议,【弹性的】FileOutputStream。它是个子类,核心逻辑在父类ResilientOutputStreamBase上,看看write方法:

public void write(byte b[], int off, int len) {if (isPresumedInError()) {if (!recoveryCoordinator.isTooSoon()) {attemptRecovery();}return; // return regardless of the success of the recovery attempt}try {os.write(b, off, len);postSuccessfulWrite();} catch (IOException e) {postIOFailure(e);}
}

这个write方法隐藏着【即使磁盘满了也不影响业务】的秘密!它的核心逻辑是:如果能正常写文件,就写;如果写入失败(出现了IO异常),就抓住异常并切换至失败状态,接下来的一段时间都不再继续写文件,直接返回。

而此处所有的IO异常,就包含了No space left on device,因此,此处便是磁盘满了之后继续日志写入,却不会抛出No space left on device异常进而影响业务的原因。

还有一个问题,待磁盘有剩余空间后,如何恢复日志写入?上面实验结果提到,磁盘写满后,应用日志停止打印,删除文件后应用日志恢复打印。因此必然会有一个策略,能够在磁盘空间恢复后,继续进行日志写入。

再仔细查看看write方法,方法首先判断当前状态是否为“失败”。若是,接着检查自上次失败至今的时间。如果已经经过了很长时间,就【尝试恢复】。

void attemptRecovery() {try {close();} catch (IOException e) {}addStatusIfCountNotOverLimit(new InfoStatus("Attempting to recover from IO failure on " + getDescription(), this));// subsequent writes must always be in append modetry {os = openNewOutputStream();presumedClean = true;} catch (IOException e) {addStatusIfCountNotOverLimit(new ErrorStatus("Failed to open " + getDescription(), this, e));}
}

尝试恢复的逻辑是:关闭旧文件流并重新打开文件流,将【失败】状态切换至【半恢复】状态,此处并未完全进入【正常】状态,而是立即返回,即是说当次的日志记录请求并不会写文件。

下次的日志写入,才会尝试将日志写入文件

  • 若日志成功写入文件,就将状态切换至【正常】状态。
  • 若日志写入文件失败,就将状态切换至【失败】状态。

此处的失败以及恢复逻辑非常像Hystrix断路器,即经历一个正常→失败→半通路状态,通过下次请求的结果来决定是恢复正常还是保持失败。

上面提到若经过很长时间,就尝试恢复,这里的【很长时间】其实是一个泛指,它有自己的时间计算逻辑,此处采用了类似于RocketMQ在消费失败时的重试策略,即采用指数退避逻辑来控制重试时间间隔。

每次【半恢复】状态下写文件失败时,会保持【失败】状态,且每一次的失败写入都会指数级延长【失败】状态保持的时间。

public boolean isTooSoon() {long now = getCurrentTime();if (now > next) {next = now + getBackoffCoefficient();return false;} else {return true;}
}
private long getBackoffCoefficient() {long currentCoeff = backOffCoefficient;if (backOffCoefficient < BACKOFF_COEFFICIENT_MAX) {backOffCoefficient *= BACKOFF_MULTIPLIER;}return currentCoeff;
}

backOffCoefficient初始值:20

BACKOFF_COEFFICIENT_MAX:327680

BACKOFF_MULTIPLIER:4

总结

使用Logback日志框架,当磁盘满了后不必惊慌,它不会对应用程序产生太负面影响。仔细考虑,做为一个日志框架本该如此,不能因为写不了日志就抛出异常进而影响应用本身,毕竟,日志终究是个辅助的旁路逻辑,没有它应用也应该work well。

底层知识的掌握有助于迅速理解上层应用。在阅读源码的过程中,我发现了非常熟悉的设计逻辑:即类似于Hystrix的断路器和RocketMQ消费失败重试的策略。由于之前有相关经验,因此我很快就能够理解作者的设计意图。

注:事后我测试了一下Log4j2日志框架,表现也差不多,磁盘满了也不会对应用程序本身产生影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/129605.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

sqli-lab靶场通关

文章目录 less-1less-2less-3less-4less-5less-6less-7less-8less-9less-10 less-1 1、提示输入参数id&#xff0c;且值为数字&#xff1b; 2、判断是否存在注入点 id1报错&#xff0c;说明存在 SQL注入漏洞。 3、判断字符型还是数字型 id1 and 11 --id1 and 12 --id1&quo…

spark-03

RDD是抽象概念&#xff0c;分区是物理概念

实用指南:如何解决企业组网中网络卡顿问题?

随着互联网的发展&#xff0c;企业逐步将办公应用系统部署在内网服务器或者上云了&#xff0c;导致很多日常工作都需要网络才能访问。员工在工作的时候网络不给力&#xff0c;卡顿半天也打不开&#xff0c;非常影响工作效率和心情。 在企业组网过程中&#xff0c;网络卡顿现象的…

给 Linux0.11 添加网络通信功能 (Day3: 完成 MIT6.S081 最终实验 网卡驱动(1. 安装工具链和依赖))

url: https://pdos.csail.mit.edu/6.S081/2020/labs/net.html 首先看 tools章节&#xff1a;https://pdos.csail.mit.edu/6.S081/2020/tools.html 浏览了一下&#xff0c;就是要我们安装依赖 执行以下命令 sudo apt-get install git build-essential gdb-multiarch qemu-syst…

100M跨境电商服务器能同时容纳多少人访问?

​  随着“出国”“出海”需求的业务量增多&#xff0c;网络的不断发展&#xff0c;服务商开始在带宽资源配备上作出各种改进。无论是纯国际带宽还是优化回国带宽租用&#xff0c;我们都可以独享&#xff0c;并且享受到大带宽。一般&#xff0c;做跨境电商业务的群体&#xf…

使用MATLAB进行傅里叶变换

1、定义 T1;% 周期0-1 N20;% 最大谐波 k-N:N;% -20:20——-20表示a_(20)e^(j*20*w0*t) N1length(k);%N141 % ceil(N1/2)21%即21是N1的中位数tlinspace(0,T,100); Ntlength(t); ttlinspace(-4*T,4*T,1024); Nttlength(tt);2、原函数 w02*pi/T; % 0-T xt(t>T/4).* 1.0; fig…

Git知识整理(持续更新)

一、跨系统配置之CSLF和LF Windows系统中&#xff0c;从第n行到第n1行&#xff0c;用的是回车\r加换行\n&#xff0c;即Carriage Return和Line Feed。 Mac和Linux系统中&#xff0c;从第n行到第n1行&#xff0c;只用了换行\n&#xff0c;即Line Feed。 git有CRLF机制&#xf…

数学分析:含参变量的积分

同样很多收敛性的证明不是重点&#xff0c;但里面的知识还是需要适当掌握&#xff0c;知道中间的大致思考和解决路径即可。 本质还是极限的可交换性&#xff0c;求导可以换到积分里面去操作。 这里要注意变量的区别&#xff0c;首先积分的被积变量是x&#xff0c;但是函数的变量…

机器学习笔记(二)

过拟合 如下图左边,模型出现了过拟合现象 为了解决过拟合现象, 其中一个做法是多收集数据,如右图。 第二种做法是减少模型的特征数量,即x 第三种做法是正则化 正则化就是减少x前面的参数 w的数值, 不用消除x 正则化的梯度下降如下, 因为只是缩小了w的值,而 b的值保持不变 …

Transformer预测 | Pytorch实现基于Transformer 的锂电池寿命预测(CALCE数据集)

文章目录 效果一览文章概述模型描述程序设计参考资料效果一览 文章概述 Pytorch实现基于Transformer 的锂电池寿命预测,环境为pytorch 1.8.0,pandas 0.24.2 随着充放电次数的增加,锂电池的性能逐渐下降。电池的性能可以用容量来表示,故寿命预测 (RUL) 可以定义如下: SOH(t…

ASP.NET Core 开发 Web API

2. Web Api 的创建与Http类型的介绍 2.1 ASP.Net Core Web API项目的创建 1.创建ASP.NET Core Web API项目 从“文件”菜单中选择“新建”“项目”。 在搜索框中输入“Web API”。 选择“ASP.NET Core Web API”模板&#xff0c;然后选择“下一步”。 在“配置新项目”对话框中…

FreeRTOS自我救赎2之基本工程建立

System Core 1.System Core >SYS 2.System Core >RCC 3.System Core >NVIC Middleware Middleware >FREERTOS Clock configuration Project Manager 在编译生成的代码前需要找一个与芯片对应的启动文件&#xff0c;启动文件添加进来&#xff0c;编译就没问题了