Sentinel入门

文章目录

  • 初始Sentinel
    • 雪崩问题
    • 服务保护技术对比
    • 认识Sentinel
    • 微服务整合Sentinel
  • 限流规则
    • 快速入门
    • 流控模式
      • 关联模式
      • 链路模式
    • 流控效果
      • warm up
      • 排队等待
    • 热点参数限流
      • 全局参数限流
      • 热点参数限流
  • 隔离和降级
    • FeignClient整合Sentinel
    • 线程隔离
    • 熔断降级
      • 慢调用
      • 异常比例、异常数
  • 授权规则
    • 授权规则
      • 基本规则
      • 如何获取origin
      • 给网关添加请求头
    • 自定义异常
      • 异常类型
      • 自定义异常处理
  • 规则持久化
    • 实现Sentinel持久化

初始Sentinel

雪崩问题

微服务调用链路中的某个服务故障,引起整个链路中的所有微服务都不可用,这就是雪崩
在这里插入图片描述

解决雪崩问题的常见方式有四种:

  • 超时处理:设定超时时间,请求超过一定时间没有响应就返回错误信息,不会无休止等待
    在这里插入图片描述
  • 舱壁模式:限定每个业务能使用的线程数,避免耗尽整个Tomcat的资源,因此也叫线程隔离
    在这里插入图片描述
  • 熔断降级:由断路器统计业务执行的异常比例,如果超出阈值则会熔断该业务,拦截访问该业务的一切请求
    在这里插入图片描述
  • 流量控制:限制业务访问的QPS,避免服务因流量的突增而故障
    在这里插入图片描述

服务保护技术对比

SentinelHystrix
隔离策略信号量隔离线程池隔离/信号量隔离
熔断降级策略基于慢调用比例或异常比例基于失败比率
实时指标实现滑动窗口滑动窗口(基于RxJava)
规则配置支持多种数据源支持多种数据源
扩展性多个扩展点插件的形式
基于注解的支持支持支持
限流基于QPS,支持基于调用关系的限流有限的支持
流量整形支持慢启动,匀速排队模式不支持
系统自适应保护支持不支持
控制台开箱即用,可配置规则、查看秒级监控、机器发现等不完善
场景框架适配Servlet、Spring Cloud、Dubbo、gRPC等Servlet、Spring Cloud Netflix

认识Sentinel

Sentinel是阿里巴巴开源的一款微服务流量控制组件。官网地址

Sentinel 具有以下特征:

  • 丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等
  • 完备的实时监控:Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下规模的集群的汇总运行情况
  • 广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架/库的整合模块,例如与 Spring Cloud、Dubbo、gRPC 的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel
  • 完善的 SPI 扩展点:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等

安装Sentinel

  • 下载:sentinel官方提供了UI控制台,方便我们对系统做限流设置。大家可以在GitHub下载
  • 将jar包放到任意非中文目录,执行命令:java -jar sentinel-dashboard-1.8.1.jar
  • 然后访问:localhost:8080即可看到控制台页面,默认的账户和密码都是sentinel
    在这里插入图片描述
    登录后,发现一片空白,什么都没有:这是因为我们还没有与微服务整合
    在这里插入图片描述

如果要修改Sentinel的默认端口、账户、密码、可以通过下列配置:
例如:java -Dserver.port=8088 -jar sentinel-dashboard-1.8.6.jar

配置项默认值说明
server.port8080服务端口
sentinel.dashboard.auth.usernamesentinel默认用户名
sentinel.dashboard.auth.passwordsentinel默认密码

微服务整合Sentinel

导入项目工程项目结构如下:
在这里插入图片描述


我们在order-service中整合sentinel,并连接sentinel的控制台,步骤如下:

  • 引入sentinel依赖

    <!--sentinel-->
    <dependency><groupId>com.alibaba.cloud</groupId> <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
    </dependency>
    
  • 配置控制台:修改application.yaml文件,添加下面内容:

    server:port: 8088
    spring:cloud: sentinel:transport:dashboard: localhost:8080
    
  • 访问order-service的任意端点,触发sentinel监控

    • 打开浏览器,访问http://localhost:8088/order/101,这样才能触发sentinel的监控
    • 然后再访问sentinel的控制台,查看效果:
      在这里插入图片描述

限流规则

快速入门

簇点链路
簇点链路:就是项目内的调用链路,链路中被监控的每个接口就是一个资源。默认情况下sentinel会监控SpringMVC的每一个端点(Endpoint),因此SpringMVC的每一个端点(Endpoint)就是调用链路中的一个资源

流控、熔断等都是针对簇点链路中的资源来设置的,因此我们可以点击对应资源后面的按钮来设置规则:
在这里插入图片描述

点击资源/order/{orderId}后面的流控按钮,就可以弹出表单。表单中可以添加流控规则,如下图所示:其含义是限制 /order/{orderId}这个资源的单机QPS为1,即每秒只允许1次请求,超出的请求会被拦截并报错
在这里插入图片描述

流控模式

在添加限流规则时,点击高级选项,可以选择三种流控模式

  • 直接:统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式
  • 关联:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
  • 链路:统计从指定链路访问到本资源的请求,触发阈值时,对指定链路限流
    在这里插入图片描述

关联模式

  • 关联模式:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
  • 使用场景:比如用户支付时需要修改订单状态,同时用户要查询订单。查询和修改操作会争抢数据库锁,产生竞争。业务需求是优先支付和更新订单的业务,因此当修改订单业务触发阈值时,需要对查询订单业务限流
  • 满足下面条件可以使用关联模式
    • 两个有竞争关系的资源
    • 一个优先级较高,一个优先级较低
      在这里插入图片描述
      语法说明:当/write资源访问量触发阈值时,就会对/read资源限流,避免影响/write资源

链路模式

链路模式:只针对从指定链路访问到本资源的请求做统计,判断是否超过阈值

例如有两条请求链路:

  • /test1 --> /common
  • /test2 --> /common

如果只希望统计从/test2进入到/common的请求,则可以这样配置:
在这里插入图片描述

流控效果

流控效果是指请求达到流控阈值时应该采取的措施,包括三种:

  • 快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。
  • warm up:预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。
  • 排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长
    在这里插入图片描述

warm up

warm up也叫预热模式,是应对服务冷启动的一种方案。请求阈值初始值是 maxThreshold / coldFactor,持续指定时长后,逐渐提高到maxThreshold值。而coldFactor的默认值是3

例如,我设置QPS的maxThreshold为10,预热时间为5秒,那么初始阈值就是 10 / 3 ,也就是3,然后在5秒后逐渐增长到10
在这里插入图片描述

配置规则
在这里插入图片描述

排队等待

当请求超过QPS阈值时,快速失败和warm up 会拒绝新的请求并抛出异常

而排队等待则是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝

例如:QPS = 5,意味着每200ms处理一个队列中的请求;timeout = 2000,意味着预期等待时长超过2000ms的请求会被拒绝并抛出异常

配置规则
在这里插入图片描述

热点参数限流

之前的限流是统计访问某个资源的所有请求,判断是否超过QPS阈值。而热点参数限流是分别统计参数值相同的请求,判断是否超过QPS阈值

全局参数限流

例如,一个根据id查询商品的接口:
在这里插入图片描述
访问/goods/{id}的请求中,id参数值会有变化,热点参数限流会根据参数值分别统计QPS,统计结果:
在这里插入图片描述
当id=1的请求触发阈值被限流时,id值不为1的请求不受影响

配置示例:
在这里插入图片描述
代表的含义是:对hot这个资源的0号参数(第一个参数)做统计,每1秒相同参数值的请求数不能超过5

热点参数限流

刚才的配置中,对查询商品这个接口的所有商品一视同仁,QPS都限定为5.

而在实际开发中,可能部分商品是热点商品,例如秒杀商品,我们希望这部分商品的QPS限制与其它商品不一样,高一些。那就需要配置热点参数限流的高级选项了:
在这里插入图片描述
结合上一个配置,这里的含义是对0号的long类型参数限流,每1秒相同参数的QPS不能超过5,有两个例外:

  • 如果参数值是100,则每1秒允许的QPS为10
  • 如果参数值是101,则每1秒允许的QPS为15

隔离和降级

FeignClient整合Sentinel

虽然限流可以尽量避免因高并发而引起的服务故障,但服务还会因为其它原因故障。而要将这些故障控制在一定范围,避免雪崩,就要靠线程隔离(舱壁模式)和熔断降级手段了

不管是线程隔离还是熔断降级,都是对 客户端(调用方) 的保护
在这里插入图片描述


SpringCloud中,微服务调用都是通过Feign来实现的,因此做客户端必须整合Feign和Sentinel

  • 修改OrderService的application.yml文件,开启Feign的Sentinel功能:

    feign:sentinel:enabled: true # 开启feign对sentinel的支持
    
  • 给FeignClient编写失败后的降级逻辑

    • 方式一:FallbackClass,无法对远程调用的异常做处理
    • 方式二:FallbackFactory,可以对远程调用的异常做处理,我们选择这种

步骤一: 在feign-api项目中定义类,实现FallbackFactory:

@Slf4j
public class UserClientFallbackFactory implements FallbackFactory<UserClient> {@Overridepublic UserClient create(Throwable throwable) {return new UserClient() {@Overridepublic User findByID(Long id) {log.error("查询用户异常", throwable);return new User();}};}
}

步骤二: 在feign-api项目中的DefaultFeignConfiguration类中将UserClientFallbackFactory注册为一个Bean:

@Bean
public UserClientFallbackFactory userClientFallbackFactory(){return new UserClientFallbackFactory();
}

步骤三: 在feign-api项目中的UserClient接口中使用UserClientFallbackFactory:
在这里插入图片描述

线程隔离

线程隔离有两种方式实现:

  • 线程池隔离:给每个服务调用业务分配一个线程池,利用线程池本身实现隔离效果

  • 信号量隔离:不创建线程池,而是计数器模式,记录业务使用的线程数量,达到信号量上限时,禁止新的请求

在这里插入图片描述


两者优缺点
在这里插入图片描述


线程隔离(舱壁模式)

在添加限流规则时,可以选择两种阈值类型:
在这里插入图片描述

  • QPS:就是每秒的请求数,在快速入门中已经演示过
  • 线程数:是该资源能使用用的tomcat线程数的最大值。也就是通过限制线程数量,实现 线程隔离(舱壁模式)

熔断降级

熔断降级是解决雪崩问题的重要手段。其思路是由 断路器 统计服务调用的异常比例、慢请求比例,如果超出阈值则会 熔断 该服务。即拦截访问该服务的一切请求;而当服务恢复时,断路器会放行访问该服务的请求
在这里插入图片描述
状态机包括三个状态:

  • closed:关闭状态,断路器放行所有请求,并开始统计异常比例、慢请求比例。超过阈值则切换到open状态
  • open:打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,快速失败,直接走降级逻辑。Open状态5秒后会进入half-open状态
  • half-open:半开状态,放行一次请求,根据执行结果来判断接下来的操作。
    • 请求成功:则切换到closed状态
    • 请求失败:则切换到open状态

断路器熔断策略有三种:慢调用异常比例异常数

慢调用

慢调用:业务的响应时长(RT)大于指定时长的请求认定为慢调用请求。在指定时间内,如果请求数量超过设定的最小数量,慢调用比例大于设定的阈值,则触发熔断。例如:
在这里插入图片描述
解读:RT超过500ms的调用是慢调用,统计最近10000ms内的请求,如果请求量超过10次,并且慢调用比例不低于0.5,则触发熔断,熔断时长为5秒。然后进入half-open状态,放行一次请求做测试

异常比例、异常数

异常比例或异常数:统计指定时间内的调用,如果调用次数超过指定请求数,并且出现异常的比例达到设定的比例阈值(或超过指定异常数),则触发熔断

例如,一个异常比例设置:
在这里插入图片描述
解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于0.4,则触发熔断。

一个异常数设置:
在这里插入图片描述
解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于2次,则触发熔断

授权规则

授权规则可以对请求方来源做判断和控制

授权规则

基本规则

授权规则可以对调用方的来源做控制,有白名单和黑名单两种方式

  • 白名单:来源(origin)在白名单内的调用者允许访问
  • 黑名单:来源(origin)在黑名单内的调用者不允许访问

点击左侧菜单的授权,可以看到授权规则:
在这里插入图片描述

  • 资源名:就是受保护的资源,例如/order/{orderId}
  • 流控应用:是来源者的名单,
    • 如果是勾选白名单,则名单中的来源被许可访问
    • 如果是勾选黑名单,则名单中的来源被禁止访问

比如:我们允许请求从gateway到order-service,不允许浏览器访问order-service,那么白名单中就要填写网关的来源名称(origin)
在这里插入图片描述

如何获取origin

Sentinel是通过RequestOriginParser这个接口的parseOrigin来获取请求的来源的

public interface RequestOriginParser {/*** 从请求request对象中获取origin,获取方式自定义*/String parseOrigin(HttpServletRequest request);
}

这个方法的作用就是从request对象中,获取请求者的origin值并返回
默认情况下,sentinel不管请求者从哪里来,返回值永远是default,也就是说一切请求的来源都被认为是一样的值default

因此,我们需要自定义这个接口的实现,让不同的请求,返回不同的origin

例如order-service服务中,我们定义一个RequestOriginParser的实现类:

@Component
public class HeaderOriginParser implements RequestOriginParser {@Overridepublic String parseOrigin(HttpServletRequest request) {// 1.获取请求头String origin = request.getHeader("origin");// 2.非空判断if (StringUtils.isEmpty(origin)) {origin = "blank";}return origin;}
}

我们会尝试从request-header中获取origin值

给网关添加请求头

既然获取请求origin的方式是从reques-header中获取origin值,我们必须让所有从gateway路由到微服务的请求都带上origin头
这个需要利用之前学习的一个GatewayFilter来实现,AddRequestHeaderGatewayFilter

修改gateway服务中的application.yml,添加一个defaultFilter:

spring:cloud:gateway:default-filters:- AddRequestHeader=origin,gateway # 添加名为origin的请求头,值为gateway

这样,从gateway路由的所有请求都会带上origin头,值为gateway。而从其它地方到达微服务的请求则没有这个头

自定义异常

默认情况下,发生限流、降级、授权拦截时,都会抛出异常到调用方。异常结果都是flow limmiting(限流)。这样不够友好,无法得知是限流还是降级还是授权拦截

异常类型

而如果要自定义异常时的返回结果,需要实现BlockExceptionHandler接口:

public interface BlockExceptionHandler {/*** 处理请求被限流、降级、授权拦截时抛出的异常:BlockException*/void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception;
}

这个方法有三个参数:

  • HttpServletRequest request:request对象
  • HttpServletResponse response:response对象
  • BlockException e:被sentinel拦截时抛出的异常

这里的BlockException包含多个不同的子类:

异常说明
FlowException限流异常
ParamFlowException热点参数限流的异常
DegradeException降级异常
AuthorityException授权规则异常
SystemBlockException系统规则异常

自定义异常处理

下面,我们就在order-service定义一个自定义异常处理类:

@Component
public class SentinelExceptionHandler implements BlockExceptionHandler {@Overridepublic void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception {String msg = "未知异常";int status = 429;if (e instanceof FlowException) {msg = "请求被限流了";} else if (e instanceof ParamFlowException) {msg = "请求被热点参数限流";} else if (e instanceof DegradeException) {msg = "请求被降级了";} else if (e instanceof AuthorityException) {msg = "没有权限访问";status = 401;}response.setContentType("application/json;charset=utf-8");response.setStatus(status);response.getWriter().println("{\"msg\": " + msg + ", \"status\": " + status + "}");}
}

规则持久化

现在,sentinel的所有规则都是内存存储,重启后所有规则都会丢失。在生产环境下,我们必须确保这些规则的持久化,避免丢失

规则管理模式

规则是否能持久化,取决于规则管理模式,sentinel支持三种规则管理模式:

  • 原始模式:Sentinel的默认模式,将规则保存在内存,重启服务会丢失。
  • pull模式
  • push模式

pull模式
pull模式:控制台将配置的规则推送到Sentinel客户端,而客户端会将配置规则保存在本地文件或数据库中。以后会定时去本地文件或数据库中查询,更新本地规则
在这里插入图片描述


push模式
push模式:控制台将配置规则推送到远程配置中心,例如Nacos。Sentinel客户端监听Nacos,获取配置变更的推送消息,完成本地配置更新
在这里插入图片描述

实现Sentinel持久化

修改OrderService,让其监听Nacos中的sentinel规则配置

  • 引入依赖: 在order-service中引入sentinel监听nacos的依赖

    <dependency><groupId>com.alibaba.csp</groupId><artifactId>sentinel-datasource-nacos</artifactId>
    </dependency>
    
  • 配置nacos地址: 在order-service中的application.yml文件配置nacos地址及监听的配置信息

    spring:cloud:sentinel:datasource:flow:nacos:server-addr: localhost:8848 # nacos地址dataId: orderservice-flow-rulesgroupId: SENTINEL_GROUPrule-type: flow # 还可以是:degrade、authority、param-flow
    
  • 使用修改源代码的Sentinel

    • Sentinel修改教程
  • 启动方式跟官方一样:java -jar sentinel-dashboard.jar

  • 如果要修改nacos地址,需要添加参数:java -jar -Dnacos.addr=localhost:8848 sentinel-dashboard.jar

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/130546.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【轻松玩转MacOS】指引篇:这9篇指南助你轻松上手

引言 亲爱的读者&#xff0c;欢迎来到《轻松玩转MacOS》&#xff01;这里是专为MacOS新手打造的使用教学专栏&#xff0c;无论您是从Windows转投Mac的初学者&#xff0c;还是对MacOS操作略知一二但希望更进一步的朋友&#xff0c;都能在这里找到您需要的答案。 正文 1、基本…

linux centos出现No space left on device解决方案

问题是因为系统磁盘空间不足 解决方法: 找到那个磁盘不足问题 df -lh 发现/dev/mapper/cl-root磁盘已用50G,有如下 解决方案&#xff1a; 1、如果是虚拟机可以通过分配空间使其空间增加 2、将其他不常用磁盘空间分配给cl-root如&#xff08; /dev/mapper/cl-home &#…

自编码器Auto-Encoder

目录 一. 自编码器二. 香草自编码器&#xff08;vanilla autoencoder&#xff09;三. 多层自编码器四. 卷积自编码器五. 稀疏自编码器六. 降噪自编码器 一. 自编码器 Auto-Encoder&#xff0c;中文叫作自编码器&#xff0c;是一种无监督式学习模型。它基于反向传播算法与最优化…

kali linux安装redis

官网&#xff1a;Install Redis from Source | Redis wget https://download.redis.io/redis-stable.tar.gztar -xzvf redis-stable.tar.gz cd redis-stable make显示如下即可进入下一步 sudo make installredis-server 可以看到已经可以使用了。 但是由于第一次使用导致了re…

实施运维01

一.运维实施工程师所具备的知识 1.运维工程师&#xff0c;实施工程师是啥&#xff1f; 运维工程师负责服务的稳定性&#xff0c;确保服务无间断的为客户提供服务. 实施工程师负责工程的实施工作&#xff0c;负责现场培训&#xff0c;一般都要出差&#xff0c;哪里有项目就去…

STM32单片机入门学习(六)-光敏传感器控制LED

光敏传感器模块和LED接线 LED负极接B12,正极接VCC 光敏传感模块一DO端接B13,GND接GND&#xff0c;VCC接VCC,AO不接。 如图&#xff1a; 主程序代码&#xff1a;main.c #include "stm32f10x.h" #include "Delay.h" //delay函数所在头文件 #include …

【数据结构】算法效率的度量方法

&#x1f984;个人主页:修修修也 &#x1f38f;所属专栏:数据结构 ⚙️操作环境:Visual Studio 2022 目录 &#x1f38f;事后统计方法 &#x1f38f;事前分析估算方法 &#x1f38f;函数的渐进式增长 结语 在上篇文章中我们提到了算法的设计要求中我们要尽量满足时间效率高…

Visual Studio Code 安裝

一、Visual Studio Code 安裝 VS Code 下载地址&#xff1a;https://code.visualstudio.com/ windows系统的快速下载地址&#xff1a;https://vscode.cdn.azure.cn/stable/441438abd1ac652551dbe4d408dfcec8a499b8bf/VSCodeUserSetup-x64-1.75.1.exe macOS系统的快速下载地址…

LabVIEW使用ZigBee无线传感器开发住宅负载电力应用

LabVIEW使用ZigBee无线传感器开发住宅负载电力应用 长期以来&#xff0c;住宅客户的需求一直是电力行业的一部分。由于公用事业需要建设基础设施以满足即时和长期需求&#xff0c;因此公用事业账单既包含能源费用&#xff0c;其中衡量客户随时间消耗的总电量&#xff0c;也包含…

虹科方案 | 汽车CAN/LIN总线数据采集解决方案

全文导读&#xff1a;现代汽车配备了复杂的电子系统&#xff0c;CAN和LIN总线已成为这些系统之间实现通信的标准协议&#xff0c;为了开发和优化汽车的电子功能&#xff0c;汽车制造商和工程师需要可靠的数据采集解决方案。基于PCAN和PLIN设备&#xff0c;虹科提供了一种高效、…

人工智能辅导程序 Mr. Ranedeer AI Tutor

人工智能技术正在不断发展&#xff0c;并在各个领域发挥着越来越重要的作用。在教育领域&#xff0c;人工智能也得到了广泛的应用&#xff0c;其中包括人工智能辅导程序。 Mr. Ranedeer AI Tutor 是一个开源的人工智能辅导程序&#xff0c;使用 OpenAI 的 GPT-4 语言模型来提供…