大数据——Spark Streaming

是什么

Spark Streaming是一个可扩展、高吞吐、具有容错性的流式计算框架。
之前我们接触的spark-core和spark-sql都是离线批处理任务,每天定时处理数据,对于数据的实时性要求不高,一般都是T+1的。但在企业任务中存在很多的实时性的任务需求,列如双十一的京东阿里都会要求做一个实时的数据大屏,显示实时订单。
在这里插入图片描述
实时计算框架对比

框架类别框架类型数据单位其他吞吐量延迟
Storm流式计算框架record的处理数据单位支持micro-batch方式一般更低
Spark批处理计算框架RDD处理数据单位支持micro-batch流式处理数据更强一般

Spark Streaming组件

  • Streaming Context
    • 一个Context启动,则不能有新的DStream建立或者添加;
    • 一个Context停止,不能重新启动;
    • 在JVM中,只能有一个Streaming Context活跃;一个Spark Context会创建一个Streaming Context;
    • Streaming Context上调用stop方法,SparkContext也会关闭,如果只想关闭Streaming Context,可以设置stop()方法里的false参数;
    • 一个SparkContext对象可以重复创建多个Streaming Context对象,但每次只能运行一个,即需要关闭一个再开下一个。
  • DStream
    • 表示一个连续的数据流;
    • DStream内部是由一系列的RDD组成;
    • DStream中的每个RDD都有确定时间间隔内的数据;
    • 对DStream的操作都转换成对DStream隐含的RDD操作;
    • 数据源:
数据源类型
基本源TCP/IP or FileSystem
高级源Kafka or Flume

Spark Streaming编码步骤

import os
# 配置spark driver和pyspark运⾏时,所使⽤的python解释器路径
PYSPARK_PYTHON = "/miniconda2/envs/py365/bin/python"
JAVA_HOME='/root/bigdata/jdk'
SPARK_HOME = "/root/bigdata/spark"
# 当存在多个版本时,不指定很可能会导致出错
os.environ["PYSPARK_PYTHON"] = PYSPARK_PYTHON
os.environ["PYSPARK_DRIVER_PYTHON"] = PYSPARK_PYTHON
os.environ['JAVA_HOME']=JAVA_HOME
os.environ["SPARK_HOME"] = SPARK_HOME
from pyspark import SparkContext
from pyspark.streaming import StreamingContextif __name__ == "__main__":sc = SparkContext("local[2]",appName="NetworkWordCount")#参数2:指定执⾏计算的时间间隔ssc = StreamingContext(sc, 1)#监听ip,端⼝上的上的数据lines = ssc.socketTextStream('localhost',9999)#将数据按空格进⾏拆分为多个单词words = lines.flatMap(lambda line: line.split(" "))#将单词转换为(单词,1)的形式pairs = words.map(lambda word:(word,1))#统计单词个数wordCounts = pairs.reduceByKey(lambda x,y:x+y)#打印结果信息,会使得前⾯的transformation操作执⾏wordCounts.pprint()#启动StreamingContextssc.start()#等待计算结束ssc.awaitTermination()

Spark Streaming状态操作

Spark Streaming存在两种状态操作:UpdateStateByKey和Window操作。

  • updateStateByKey
    如果没有updateStateByKey,我们需要将每一秒的数据计算好放入mysql中,再用mysql进行计算,而updateStateByKey将每隔一段数据进行打包,封装成RDD,这样每个时间片段的数据之间是没有关联的。一般为以下步骤:
  1. ⾸先,要定义⼀个state,可以是任意的数据类型
  2. 其次,要定义state更新函数–指定⼀个函数如何使⽤之前的state和新值来更新state
  3. 对于每个batch,Spark都会为每个之前已经存在的key去应⽤⼀次state更新函数,⽆论这个key在batch中是否有新的数据。如果state更新函数返回none,那么key对应的state就会被删除
  4. 对于每个新出现的key,也会执⾏state更新函数
  • Window
    在这里插入图片描述
    Window操作是基于窗⼝⻓度和滑动间隔来⼯作的;窗⼝的⻓度控制考虑前⼏批次数据量;默认为批处理的滑动间隔来确定计算结果的频率。
    窗口长度L是运算的数据量;
    滑动间隔G是控制每隔多长时间做一次运算。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/130863.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker 网络访问原理解密

How Container Networking Works: Practical Explanation 这篇文章讲得非常棒,把docker network讲得非常清晰。 分为三个部分: 1)docker 内部容器互联。 2)docker 容器 访问 外部root 网络空间。 3)外部网络空间…

读书笔记:多Transformer的双向编码器表示法(Bert)-4

多Transformer的双向编码器表示法 Bidirectional Encoder Representations from Transformers,即Bert; 第二部分 探索BERT变体 从本章开始的诸多内容,以理解为目标,着重关注对音频相关的支持(如果有的话)…

解读非托管流动性协议Hover: 差异化、层次化的全新借贷体系

“Hover 是 DeFi 借贷赛道的另辟蹊径者,除了在自身机制(借贷模型、治理体系)上进行创新获得内生动力外,背靠日渐繁荣的 Kava、Cosmos 生态进一步获得外生动力,发展潜力俱佳” 与 DEX 类似,借贷也是 DeFi 世…

小谈设计模式(23)—桥接模式

小谈设计模式(23)—桥接模式 专栏介绍专栏地址专栏介绍 桥接模式主要角色抽象部分实现部分分析 核心思想应用场景123 优缺点分析优点123 缺点12 总结 专栏介绍 专栏地址 link 专栏介绍 主要对目前市面上常见的23种设计模式进行逐一分析和总结&#x…

Spring Boot:自定义注解--annotation

目录 自定义注解的定义和作用范围如何创建自定义注解创建注解接口 如何使用自定义注解进行数据验证创建注解处理器控制器中使用注解 如何为字段添加注解 自定义注解的定义和作用范围 自定义注解可以作用在类、方法、属性、参数、异常、字段或其他注解上。 如何创建自定义注解…

Apache Ranger:(二)对Hive集成简单使用

1.Ranger Hive-plugin安装 进入 Ranger 编译生成的目录下 找到 ranger-2.0.0-hive-plugin.tar.gz 进行解压 tar -zxvf ranger-2.0.0-hive-plugin.tar.gz -C /opt/module/ 2.修改配置文件 vim install.properties #策略管理器的url地址 POLICY_MGR_URLhttp://[ip]:6080#组件…

深眸科技自研AI视觉分拣系统,实现物流行业无序分拣场景智慧应用

在机器视觉应用环节中,物体分拣是建立在识别、检测之后的一个环节,通过机器视觉系统对图像进行处理,并结合机械臂的使用实现产品分类。 通过引入视觉分拣技术,不仅可以实现自动化作业,还能提高生产线的生产效率和准确…

Typora for Mac:优雅的Markdown文本编辑器,提升你的写作体验

Typora是一款强大的Markdown文本编辑器,专为Mac用户设计。无论你是写作爱好者,还是专业作家或博客作者,Typora都能为你提供无与伦比的写作体验。 1. 直观的界面设计 Typora的界面简洁明了,让你专注于写作,而不是被复…

基于多线程的Reactor模式的 回声服务器 EchoServer

记录下 一个线程专门用来接受accept获取客户端的fd 获取fd之后 从剩余的执行线程中 找到一个连接客户端数量最少的线程 然后将客户端的fd加入到这个线程中并通过EPOLL监听这个fd 线程之间通过eventfd来通信 将客户端的fd传到 对应的线程中 参考了MediaServer 引入…

Spring Cloud 微服务系列文章合集,一次性看个够!

微服务架构图 为了方便大家可以直接下载编辑,这里用的ProcessOn画的架构图,可以直接克隆一个出来进行编辑,地址:https://www.processon.com/view/6523a1b37fde9c4bb35c7278 微服务系列文章合集,点击阅读 Spring Cl…

深度学习DAY3:FFNNLM前馈神经网络语言模型

1 神经网络语言模型NNLM的提出 文章:自然语言处理中的语言模型预训练方法(ELMo、GPT和BERT) https://www.cnblogs.com/robert-dlut/p/9824346.html 语言模型不需要人工标注语料(属于自监督模型),所以语言…

阿里云上了新闻联播

我是卢松松,点点上面的头像,欢迎关注我哦! 阿里新任的CEO吴泳铭上央视新闻联播了! 在昨天的新闻联播里,出席科技座谈会,有一个特别镜头,出现了阿里新任CEO吴泳铭的镜头。 这个信号意义明显,我…