Text-to-SQL小白入门(八)RLAIF论文:AI代替人类反馈的强化学习

学习RLAIF论文前,可以先学习一下基于人类反馈的强化学习RLHF,相关的微调方法(比如强化学习系列RLHF、RRHF、RLTF、RRTF)的论文、数据集、代码等汇总都可以参考GitHub项目:GitHub - eosphoros-ai/Awesome-Text2SQL: Curated tutorials and resources for Large Language Models, Text2SQL, and more.,这个项目收集了Text2SQL+LLM领域的相关简介、综述、经典Text2SQL方法、基础大模型、微调方法、数据集、实践项目等等,持续更新中!

(如果觉得对您有帮助的话,可以star、fork,有问题、建议也可以提issue、pr,欢迎围观)

论文概述

基本信息

  • 英文标题:RLAIF: Scaling Reinforcement Learning from Human Feedback with AI Feedback
  • 中文标题:RLAIF:利用人工智能反馈扩展基于人类反馈的强化学习
  • 发表时间:2023年9月
  • 作者单位:Google Research
  • 论文链接:https://arxiv.org/pdf/2309.00267.pdf
  • 代码链接:无

摘要

摘要生成任务有效,其他任务比如Text2SQL任务是否有效呢?

  • 基于人类反馈的强化学习(RLHF)在将大型语言模型(llm)与人类偏好对齐方面是有效的,但收集高质量的人类偏好标签是一个关键瓶颈
  • 作者提出了RLAIF(利用AI反馈代替人类反馈),并且和RLHF进行对比,结果如下:
  • 在摘要生成任务(summarization task)中,在约70%的情况下,人类评估者更喜欢来自RLAIF和RLHF的结果,而不是SFT模型。
  • 此外,当被要求对RLAIF和RLHF摘要进行评分时,人类对两者的偏好率相同。
  • 这些结果表明,RLAIF可以产生人类水平的性能,为RLHF的可扩展性限制提供了一个潜在的解决方案。

数据可以让AI生成,评估也可以让AI评估,AI for anything

结果

上结果,有图有真相

结果表明,RLAIF达到了与RLHF相似的性能。(人类打分,人类评估谁更好)

  • RLHF 和 SFT 相比,RLHF有73%的情况更优秀
  • RLAIF 和 SFT 相比,RLAIF有71%的情况更优秀
  • RLHF 和 RLAIF 相比,RLHF有50%的情况下更优秀,也就是两者五五开。

碰巧还发现了一个论文的笔误,结果应该是论文中的图1,论文写的是表1。

论文还比较了RLHF和RLAIF分别和人类撰写的参考摘要。

  • RLAIF摘要在79%的情况下优于参考摘要。
  • RLHF摘要在80%的情况下优于参考摘要。

结果表明,RLAIF和RLHF策略倾向于生成比SFT策略更长的摘要,这可以解释一些质量改进。

但在控制长度后,两者的表现仍然优于SFT策略。

结论

证明了AI反馈的潜力

在这项工作中,论文证明了RLAIF可以在不依赖于人类注释者的情况下产生与RLHF相当的改进。

论文的实验表明,RLAIF在SFT基线上有很大的改进,改进幅度与RLHF相当。

在头对头比较中(head-to-head comparision,两者单挑的意思),人类对RLAIF和RLHF的偏好率相似。

还是有一些局限性。

比如任务是否可以推广到其他任务(和前面的摘要想法一样)

AI反馈 和 人工反馈的成本

RLHF+RAIF 结合是不是更好

等等

核心方法

贡献点

  • 摘要任务上:RLAIF达到了和RLHF相当的性能
  • 比较了各种AI 标签的技术,确定了最佳设置

RLHF

RLHF三部曲

SFT

RM

RL

SFT——提取专家知识

Supervised Fine-tuning有监督微调,简称为SFT。

SFT的数据通常是高质量的标注数据,比如基于LLM完成Text2SQL任务的话,数据集可以构造为如下形式:

以spider数据集示例:使用DB-GPT-Hub项目中预处理得到下面类似的数据:

{"prompt": "I want you to act as a SQL terminal in front of an example database, you need only to return the sql command to me.Below is an instruction that describes a task, Write a response that appropriately completes the request.\n\"\n##Instruction:\ndepartment_management contains tables such as department, head, management. Table department has columns such as Department_ID, Name, Creation, Ranking, Budget_in_Billions, Num_Employees. Department_ID is the primary key.\nTable head has columns such as head_ID, name, born_state, age. head_ID is the primary key.\nTable management has columns such as department_ID, head_ID, temporary_acting. department_ID is the primary key.\nThe head_ID of management is the foreign key of head_ID of head.\nThe department_ID of management is the foreign key of Department_ID of department.\n###Input:\nHow many heads of the departments are older than 56 ?\n\n###Response:","output": "SELECT count(*) FROM head WHERE age  >  56"}

我们可以做个测试,把prompt输入到ChatGPT-3.5中,如下:可以发现这个和标准的SQL一致,这个SQL属于比较简单的那种。

RM——类似于loss function

Reward Modeling 奖励模型,简称RM训练,最终目标就是训练一个模型,这个模型可以对LLM生成的response进行打分,得分高,代表response回答比较好。

RM的训练数据通常来说比SFT训练数据少,之前看见个例子说SFT数据占60%, RM数据占20%, RL数据占20%.

同样的,我们还是以Text2SQL任务举例子,RM数据可以构造为(prompt,chosen,rejected}的三元组,如下所示:

  • chosen数据就是SFT的标准输出,groundtruth
  • rejected数据通常来源于SFT 模型的错误输出,也就是bad case
{"prompt": "I want you to act as a SQL terminal in front of an example database, you need only to return the sql command to me.Below is an instruction that describes a task, Write a response that appropriately completes the request.\n\"\n##Instruction:\ndepartment_management contains tables such as department, head, management. Table department has columns such as Department_ID, Name, Creation, Ranking, Budget_in_Billions, Num_Employees. Department_ID is the primary key.\nTable head has columns such as head_ID, name, born_state, age. head_ID is the primary key.\nTable management has columns such as department_ID, head_ID, temporary_acting. department_ID is the primary key.\nThe head_ID of management is the foreign key of head_ID of head.\nThe department_ID of management is the foreign key of Department_ID of department.\n###Input:\nHow many heads of the departments are older than 56 ?\n\n###Response:","chosen": "SELECT count(*) FROM head WHERE age  >  56","rejected":"SELECT COUNT(head_name) FROM head WHERE age > 56;"}

损失函数如下形式:

  • 这里的x就是输入prompt
  • y_w就是chosen data
  • y_l就是rejected data

RL——引入强化学习方法

Reinforcement Learning 强化学习,简称为RL,就是利用强化学习的方法训练一个模型,使得奖励分数最高。

如下所示:

  • 优化分数最大使用的是max
  • 使用了KL散度,让训练的RL模型和原始模型差距不能过大

同样的,我们还是以Text2SQL任务举例子,RL数据可以构造为(prompt,output}的三元组,如下所示:

  • 数据形式和SFT阶段保持一致
  • SFT阶段训练的数据,不应和RL数据重叠。
{"prompt": "I want you to act as a SQL terminal in front of an example database, you need only to return the sql command to me.Below is an instruction that describes a task, Write a response that appropriately completes the request.\n\"\n##Instruction:\ndepartment_management contains tables such as department, head, management. Table department has columns such as Department_ID, Name, Creation, Ranking, Budget_in_Billions, Num_Employees. Department_ID is the primary key.\nTable head has columns such as head_ID, name, born_state, age. head_ID is the primary key.\nTable management has columns such as department_ID, head_ID, temporary_acting. department_ID is the primary key.\nThe head_ID of management is the foreign key of head_ID of head.\nThe department_ID of management is the foreign key of Department_ID of department.\n###Input:\nHow many heads of the departments are older than 56 ?\n\n###Response:","output": "SELECT count(*) FROM head WHERE age  >  56"}

RLAIF

进入主题RLAIF

LLM偏好标注

  • 前言介绍和说明任务
  • 1个例子说明:
    • 需要输入一段文本Text、一对摘要(摘要1和摘要2)
    • 模型输出偏好 Preferred Summary=1
  • 给出文本和等待标注的摘要1、摘要2
  • 结束:给出偏好 Preferred Summary=

在给出输入信息后,得到LLM的输出偏好1 或者 2之后,计算对数概率和softmax,得到偏好分布。

论文提到计算偏好分布也有其他的替代方法:

  • 比如直接让模型输出output = "The first summary is better"
  • 或者直接让偏好分布是one-hot编码

那么论文为什么不这么做呢?因为论文说就用上面的方法(输出1 或者 2),准确率已经足够高了。

论文做了一个实验,就是对比不同的任务前沿介绍,看看LLM标注的差距。

  • Base:代表任务介绍比较简单,比如是“which summary is bet- ter?”(这个是论证任务介绍应该简单点还是详细点?)
  • OpenAI:代表任务介绍比较详细,密切模仿了OpenAI,生成的任务介绍包含了哪些构成好的摘要信息
  • COT:代表chain-of-thought思维链。(这个是论证思维链是否有效)
  • 1-shot:代表给出1个例子,其他shot类似。(这个是论证上下文学习是否有效)

这个实验证明了:效果最好是OpenAI + COT + 0-shot

  • 任务说明应该详细点好,OpenAI变现更好
  • 思维链是有效的
  • 上下文学习无效,甚至会降低效果,因为shot越多,效果越差。

Position Bias位置偏差

注意例子不要都是第一个更好,或者都是第二个更好

这样可能让模型有记忆以为都是第一个更好/第二个更好

所以输入要有随机性。

论文如何减少这个偏差的?

实验两次,取平均值。

  • 正常顺序来一次,比如输入「摘要1-摘要2」
  • 反方向顺序来一次,比如输入「摘要2-摘要1」

Chain-of-thought Reasoning思维链推理

思维链就是让模型模仿人类思考问题的方式。

回答问题的时候,不仅要有答案,更要有思考的过程。

比如摘要任务,选取第一个摘要更好,是因为第一个摘要的准确性,覆盖性更好。

Self-Consistency自洽性/前后一致性

采用多个推理路径,得到答案。

取平均值。

RLAIF步骤

LLM标记偏好后,训练奖励模型RM模型来预测偏好。

  • 论文的方法产生的是软标签比如(preferencesi =[0.6, 0.4]),使用softmax交叉熵损失,而不是前面提到的RLHF中RM的损失函数。

蒸馏方法:用小模型去逼近大模型,让小模型的输出尽量和大模型保持一致。(模型轻量化的方法之一)

  • 小模型:学生模型
  • 大模型:教师模型

使用AI标注的数据进行训练RM模型,可以理解为模型蒸馏的一部分,因为AI打标签的大模型LLM通常比RM更大、更强。

RL训练不使用PPO算法。

RL训练采用 Advantage Actor Critic (A2C)方法,因为更简单,更有效,在摘要任务上。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/132562.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

论文阅读/写作扫盲

第一节:期刊科普 JCR分区和中科院分区是用于对期刊进行分类和评估的两种常见方法。它们的存在是为了帮助学术界和研究人员更好地了解期刊的学术质量、影响力和地位。 JCR分区(Journal Citation Reports):JCR分区是由Clarivate Ana…

android U广播详解(一)

概念介绍 进程队列 BroadcastQueueModernImpl 的设计围绕着为设备上的每个潜在进程维护一个单独的 BroadcastProcessQueue 实例。表明用于传送到特定进程的Pending {link BroadcastRecord} 条目队列。整个类都标记为 {code NotThreadSafe},因为调用者有责任始终与…

Excel往Word复制表格时删除空格

1.背景 在编写文档,经常需要从Excel往Word里复制表格 但是复制过去的表格前面会出现空格(缩进) 再WPS中试了很多方法,终于摆脱了挨个删除的困扰 2. WPS排版中删除 选择表格菜单栏-选在【开始】-【排版】选择【更多段落处理】-【段…

ROS-PX4仿真笔记_1

offbord模式测试 rosrun offboard_pkg position stablelize模式 lqr控制器实验 roslaunch px4 fast_test.launch 无人机起飞1.5-2m sh mybot_gazebo.sh#roslaunch px4 fast_racing.launch & sleep 20; roslaunch ego_planner single_run_in_gazebo.launch & sleep 1…

快速解决“找不到msvcr120.dll无法执行代码”问题,总结5解决方法

计算机已经成为我们生活和工作中不可或缺的一部分。然而,在使用计算机的过程中,我们常常会遇到各种问题,其中之一就是找不到msvcr120.dll文件。这个问题可能会可能导致计算机程序软件,游戏无法正常运行,影响到我们的工…

使用testMe自动生成单元测试用例

文章目录 1、testMe简介2、插件对比2.1 testMe2.2 Squaretest2.3 Diffblue 3、IDEA插件安装4、单测用例4.1 maven依赖4.2 生成用例 5、自定义模板6、使用自定义模板生成用例7、调试用例 1、testMe简介 公司对于系统单元测试覆盖率有要求,需要达到50%或80%以上才可以…

身份证号码,格式校验:@IdCard(自定义注解)

目标 自定义一个用于校验 身份证号码 格式的注解IdCard,能够和现有的 Validation 兼容,使用方式和其他校验注解保持一致(使用 Valid 注解接口参数)。 校验逻辑 有效格式 符合国家标准。 公民身份号码按照GB11643-…

使用 Eziriz .NET Reactor 对c#程序加密

我目前测试过好几个c#加密软件。效果很多时候是加密后程序执行错误,或者字段找不到的现象 遇到这个加密软件用了一段时间都很正常,分享一下使用流程 破解版本自行百度。有钱的支持正版,我用的是 Eziriz .NET Reactor 6.8.0 第一步 安装 Ezi…

我用了多年的前端框架,强烈推荐!

大家好,我是鱼皮,今天给大家分享一个我自己用了多年、现在团队也在用的前端框架 —— Ant Design Pro。 什么是 Ant Design Pro? Ant Design Pro 是由蚂蚁金服开发的、基于 Ant Design 组件库的开发框架,专门用于构建企业级管理…

《UnityShader入门精要》学习1

读者可以在开源网站github(https://github.com/candycat1992/Unity_Shaders_Book)上下载本书的源代码。 第二章 渲染流水线 渲染流水线的最终目的在于生成或者说是渲染一张二维纹理,即我们在电脑屏幕上看到的所有效果,它的输入是…

java基础 IO

IO流概述: IO流的分类 字节流写入数据: package wwx;import jdk.swing.interop.SwingInterOpUtils;import java.io.*;public class Test {public static void main(String[] args) throws IOException {//指定写入文件的路径 需要抛出异常FileOutputStr…

【Java 进阶篇】HTML 语义化标签详解

HTML(HyperText Markup Language)是构建Web页面的标准语言。在HTML中,标签(tag)是用于定义页面结构和内容的关键元素。在构建网页时,了解如何正确使用HTML标签是非常重要的,因为它们不仅影响页面…