【算法优选】 二分查找专题——贰

文章目录

  • 😎前言
  • 🌲[山脉数组的峰顶索引](https://leetcode.cn/problems/peak-index-in-a-mountain-array/)
    • 🚩题目描述:
    • 🚩算法思路
    • 🚩代码实现:
  • 🌴[寻找峰值](https://leetcode.cn/problems/find-peak-element/submissions/)
    • 🚩题目描述
    • 🚩算法思路:
    • 🚩代码实现
  • 🍀[寻找旋转排序数组中的最小值](https://leetcode.cn/problems/find-minimum-in-rotated-sorted-array/)
    • 🚩题目描述
    • 🚩算法思路
    • 🚩代码实现
  • 🎍[点名](https://leetcode.cn/problems/que-shi-de-shu-zi-lcof/)
    • 🚩题目描述
    • 🚩思路解析
    • 🚩代码实现
  • ⭕总结

😎前言

二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法。但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列

查找过程

首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

算法要求

1.必须采用顺序存储结构。
2.必须按关键字大小有序排列。

比较次数

计算公式:
当顺序表有n个关键字时:
查找失败时,至少比较a次关键字;
查找成功时,最多比较关键字次数是b。
注意:a,b,n均为正整数。

算法复杂度

二分查找的基本思想是将n个元素分成大致相等的两部分,取a[n/2]与x做比较,如果x=a[n/2],则找到x,算法中止;如果x<a[n/2],则只要在数组a的左半部分继续搜索x,如果x>a[n/2],则只要在数组a的右半部搜索x.
时间复杂度即是while循环的次数。
总共有n个元素,
渐渐跟下去就是n,n/2,n/4,…n/2^k(接下来操作元素的剩余个数),其中k就是循环的次数
由于你n/2^k取整后>=1
即令n/2^k=1
可得k=log2n,(是以2为底,n的对数)
所以时间复杂度可以表示O(h)=O(log2n)

🌲山脉数组的峰顶索引

🚩题目描述:

符合下列属性的数组 arr 称为 山脉数组 :
arr.length >= 3
存在 i(0 < i < arr.length - 1)使得:

  • arr[0] < arr[1] < … arr[i-1] < arr[i]

  • arr[i] > arr[i+1] > … > arr[arr.length - 1]

给你由整数组成的山脉数组 arr ,返回满足 arr[0] < arr[1] < … arr[i - 1] < arr[i] > arr[i + 1] > … > arr[arr.length - 1] 的下标 i 。

你必须设计并实现时间复杂度为 O(log(n)) 的解决方案。

  • 示例 1:
    输入:arr = [0,1,0]
    输出:1

  • 示例 2:
    输入:arr = [0,2,1,0]
    输出:1

  • 示例 3:
    输入:arr = [0,10,5,2]
    输出:1

class Solution {public int peakIndexInMountainArray(int[] arr) {}
}

🚩算法思路

1、分析峰顶位置的数据特点,以及⼭峰两旁的数据的特点:

  • 峰顶数据特点: arr[i] > arr[i - 1] && arr[i] > arr[i + 1] ;

  • 峰顶左边的数据特点: arr[i] > arr[i - 1] && arr[i] < arr[i + 1] ,也就是呈现上升趋势

  • 峰顶右边数据的特点: arr[i] < arr[i - 1] && arr[i] > arr[i + 1] ,也就是呈现下降趋势

2.、因此,根据 mid 位置的信息,我们可以分为下⾯三种情况:

  • 如果 mid 位置呈现上升趋势,说明我们接下来要在 [mid + 1, right] 区间继续搜索;

  • 如果 mid 位置呈现下降趋势,说明我们接下来要在 [left, mid - 1] 区间搜索;

  • 如果 mid 位置就是⼭峰,直接返回结果

🚩代码实现:

class Solution {public int peakIndexInMountainArray(int[] arr) {int left = 1;int right = arr.length - 2;while(left < right) {int mid = left + (right - left + 1) / 2;if(arr[mid] > arr[mid - 1]) {left = mid;} else {right = mid - 1;}}return left;}
}

🌴寻找峰值

🚩题目描述

峰值元素是指其值严格大于左右相邻值的元素。

给你一个整数数组 nums,找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回 任何一个峰值 所在位置即可。

你可以假设 nums[-1] = nums[n] = -∞ 。

你必须实现时间复杂度为 O(log n) 的算法来解决此问题。

  • 示例 1:
    输入:nums = [1,2,3,1]
    输出:2
    解释:3 是峰值元素,你的函数应该返回其索引 2。
  • 示例 2:
    输入:nums = [1,2,1,3,5,6,4]
    输出:1 或 5
    解释:你的函数可以返回索引 1,其峰值元素为 2;或者返回索引 5, 其峰值元素为 6。
class Solution {public int findPeakElement(int[] nums) {}
}

🚩算法思路:

寻找⼆段性:
任取⼀个点 i ,与下⼀个点 i + 1 ,会有如下两种情况:

  1. arr[i] > arr[i + 1] :此时「左侧区域」⼀定会存在⼭峰(因为最左侧是负⽆穷),那么我们可以去左侧去寻找结果;

  2. arr[i] < arr[i + 1] :此时「右侧区域」⼀定会存在⼭峰(因为最右侧是负⽆穷),那么我们可以去右侧去寻找结果

当我们找到「⼆段性」的时候,就可以尝试⽤「⼆分查找」算法来解决问题

🚩代码实现

class Solution {public int findPeakElement(int[] nums) {int left = 0;int right = nums.length - 1;if(right < 1) {return 0;}while(left < right) {int cmd = (left + right + 1) / 2;if(nums[cmd -1] <= nums[cmd] ) {left = cmd;} else {right = cmd -1;}}return left;}
}

🍀寻找旋转排序数组中的最小值

🚩题目描述

已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7] 在变化后可能得到:

  • 若旋转 4 次,则可以得到 [4,5,6,7,0,1,2]
  • 若旋转 7 次,则可以得到 [0,1,2,4,5,6,7]

注意,数组 [a[0], a[1], a[2], …, a[n-1]] 旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], …, a[n-2]] 。

给你一个元素值 互不相同 的数组 nums ,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。

你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。

  • 示例 1:
    输入:nums = [3,4,5,1,2]
    输出:1
    解释:原数组为 [1,2,3,4,5] ,旋转 3 次得到输入数组。

  • 示例 2:
    输入:nums = [4,5,6,7,0,1,2]
    输出:0
    解释:原数组为 [0,1,2,4,5,6,7] ,旋转 4 次得到输入数组。

  • 示例 3:
    输入:nums = [11,13,15,17]
    输出:11
    解释:原数组为 [11,13,15,17] ,旋转 4 次得到输入数组

class Solution {public int findMin(int[] nums) {}
}

🚩算法思路

题⽬中的数组规则如下图所⽰:
在这里插入图片描述
其中 C 点就是我们要求的点。

⼆分的本质:找到⼀个判断标准,使得查找区间能够⼀分为⼆。

通过图像我们可以发现, [A,B] 区间内的点都是严格⼤于 D 点的值的, C 点的值是严格⼩于 D 点的值的。但是当 [C,D] 区间只有⼀个元素的时候, C 点的值是可能等于 D 点的值的。

因此,初始化左右两个指针 left , right :

然后根据 mid 的落点,我们可以这样划分下⼀次查询的区间:

  • 当 mid 在 [A,B] 区间的时候,也就是 mid 位置的值严格⼤于 D 点的值,下⼀次查询区间在 [mid + 1,right] 上;
  • 当 mid 在 [C,D] 区间的时候,也就是 mid 位置的值严格⼩于等于 D 点的值,下次

查询区间在 [left,mid] 上。

当区间⻓度变成 1 的时候,就是我们要找的结果

🚩代码实现

class Solution {public int findMin(int[] nums) {int left = 0;int right = nums.length - 1;int cmp = nums[right];while(left < right) {int cmd = (left + right ) / 2;if(nums[cmd] > cmp) {left = cmd + 1;} else {right = cmd;}}return nums[left];}
}

🎍点名

🚩题目描述

某班级 n 位同学的学号为 0 ~ n-1。点名结果记录于升序数组 records。假定仅有一位同学缺席,请返回他的学号。

  • 示例 1:
    输入: records = [0,1,2,3,5]
    输出: 4

  • 示例 2:
    输入: records = [0, 1, 2, 3, 4, 5, 6, 8]
    输出: 7

🚩思路解析

关于这道题中,时间复杂度为 O(N) 的解法有很多种,⽽且也是⽐较好想的,这⾥就不再赘述。

本题只讲解⼀个最优的⼆分法,来解决这个问题。
在这个升序的数组中,我们发现:

  • 在第⼀个缺失位置的左边,数组内的元素都是与数组的下标相等的;

  • 在第⼀个缺失位置的右边,数组内的元素与数组下标是不相等的。

因此,我们可以利⽤这个「⼆段性」,来使⽤「⼆分查找」算法。

🚩代码实现

class Solution {public int missingNumber(int[] nums) {int left = 0;int right = nums.length - 1;while(left < right) {int mid = left + (right - left) / 2;if(nums[mid] == mid) {left = mid + 1;} else {right = mid;}}return left == nums[left] ? left + 1 : left;}
}

⭕总结

关于《【算法优选】 二分查找专题——贰》就讲解到这儿,感谢大家的支持,欢迎各位留言交流以及批评指正,如果文章对您有帮助或者觉得作者写的还不错可以点一下关注,点赞,收藏支持一下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/132870.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

技术先驱视角:长城汽车工程师揭秘Hi4技术的无限潜力

文 | 智能相对论 作者 | 沈浪 汽车行业的变革正在回归平衡和理性&#xff0c;混动市场再度掀起新的浪潮&#xff0c;以Hi4技术为代表的混合动力解决方案备受瞩目&#xff0c;并爆发出无限潜力。 日前&#xff0c;工信部等七个部门联合印发了《关于汽车行业稳增长工作方案&am…

ceph 分布式存储与部署

目录 一、存储基础&#xff1a; 1.单机存储设备&#xff1a; 2. 单机存储的问题&#xff1a; 3. 商业存储解决方案&#xff1a; 4. 分布式存储&#xff1a; 5. 分布式存储的类型&#xff1a; 二、Ceph 简介&#xff1a; 三、Ceph 优势&#xff1a; 四、Ceph 架构&#xff1a…

Linux之open/close/read/write/lseek记录

一、文件权限 这里不做过多描述&#xff0c;只是简单的记录&#xff0c;因为下面的命令会涉及到。linux下一切皆是文件包括文本、硬件设备、管道、数据库、socket等。通过ls -l 命令可以查看到以下信息 drwxrwxrwx 1 root root 0 Oct 10 17:06 open -rwxrwxrwx 1 root roo…

日常学习收获之----react的ref和wrappedComponentRef的区别

react获取子组件的方式&#xff0c;有ref和wrappedComponentRef。那这两者有什么区别呢&#xff1f; 区别在于是否用了高阶组件&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#…

扁圆头带榫螺栓

声明 本文是学习GB-T 15-2013 扁圆头带榫螺栓. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 1 范围 本标准规定了螺纹规格为M6&#xff5e;M24、 产品等级为C 级的扁圆头带榫螺栓。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是…

mysql面试题28:MySQL的主从复制模式、MySQL主从复制的步骤、MySQL主从同步延迟的原因、MySQL主从同步延迟的解决办法

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:简单讲一下MySQL的主从复制模式 MySQL的主从复制(Master-Slave Replication)是一种数据库复制技术,用于将一个MySQL数据库服务器(主服务器)的…

LMI FocalSpec 3D线共焦传感器 使用笔记1

一.硬件介绍 以上特别注意: 屏蔽线必须接地,因为在现场实际调试中,使用软件调试发现经常 弹窗 传感器丢失警告!! 以上 Position LED 的灯被钣金挡住,无法查看异常现象,能否将指示灯设置在软件界面上? 需要确认是软触发还是硬触发,理论上 硬触发比软触发速度要快.(我们目前使用…

Tomcat项目启动报错

java.io.IOException: java.lang.ClassCastException: Cannot cast org.springframework.web.SpringServletContainerInitializer to javax.servlet.ServletContainerInitializer解决办法&#xff1a;可能Tomcat版本不对&#xff0c;使用7.0.90版本启动报错&#xff0c;使用8.0…

JVM面试题:(四)四种引用方式强弱软虚

四种引用方式&#xff1a; 强引用 强引用是平常中使用最多的引用&#xff0c;强引用在程序内存不足&#xff08;OOM&#xff09;的时候也不会被回收&#xff0c;使用 方式&#xff1a; String str new String(“str”); System.out.println(str); 软引用 软引用在程序内存不…

通讯网关软件020——利用CommGate X2Mysql实现Modbus TCP数据转储Mysql

本文介绍利用CommGate X2MYSQL实现从Modbus TCP设备读取数据并转储至MYSQL数据库。CommGate X2MYSQL是宁波科安网信开发的网关软件&#xff0c;软件可以登录到网信智汇(http://wangxinzhihui.com)下载。 【案例】如下图所示&#xff0c;实现从Modbus TCP设备读取数据并转储至M…

第十三更---大家都在那里查找资料??

今天聊点题外话。大家都在那里查找资料呢&#xff0c;如今的资源网站太多了&#xff0c;眼花缭乱。今天我把一些常见的平台罗列一下 大家还有什么宝藏网站的话多多评论区分享吧 目录 一.CSDN 二.掘金 三.菜鸟教程 四.MDN 五.牛客 六.博客园 七.b站 八.微信读书 一.CSD…

笔训【day4】

目录 选择题 1、进制 格式 2、 数组名在&和sizeof后&#xff0c;表数组本身 3、求二维数组某元素地址 ​编辑 ​编辑 4、x x & (x-1) 二进制位1的个数 ​编辑 5、斐波那契递归次数 编程题 1、计算糖果 2、进制转换 选择题 1、进制 格式 十进制转二进制就除…