竞赛选题 深度学习YOLO安检管制物品识别与检测 - python opencv

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 卷积神经网络
  • 4 Yolov5
  • 5 模型训练
  • 6 实现效果
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习YOLO安检管制误判识别与检测 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

军事信息化建设一直是各国的研究热点,但我国的武器存在着种类繁多、信息散落等问题,这不利于国防工作提取有效信息,大大妨碍了我军信息化建设的步伐。同时,我军武器常以文字、二维图片和实体武器等传统方式进行展示,交互性差且无法满足更多军迷了解武器性能、近距离观赏或把玩武器的迫切需求。本文将改进后的Yolov5算法应用到武器识别中,将武器图片中的武器快速识别出来,提取武器的相关信息,并将其放入三维的武器展现系统中进行展示,以期让人们了解和掌握各种武器,有利于推动军事信息化建设。

2 实现效果

检测展示
在这里插入图片描述

3 卷积神经网络

简介

卷积神经网络 (CNN)
是一种算法,将图像作为输入,然后为图像的所有方面分配权重和偏差,从而区分彼此。神经网络可以通过使用成批的图像进行训练,每个图像都有一个标签来识别图像的真实性质(这里是猫或狗)。一个批次可以包含十分之几到数百个图像。

对于每张图像,将网络预测与相应的现有标签进行比较,并评估整个批次的网络预测与真实值之间的距离。然后,修改网络参数以最小化距离,从而增加网络的预测能力。类似地,每个批次的训练过程都是类似的。
在这里插入图片描述

相关代码实现

cnn卷积神经网络的编写如下,编写卷积层、池化层和全连接层的代码

conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')
pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')
conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')
pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')
conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')
pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')
conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')
conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')
pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')flatten = tf.layers.flatten(pool4)
fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)
fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)
fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)
fc3 = tf.layers.dense(fc2, 2, None)

4 Yolov5

我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:
在这里插入图片描述

网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

Mosaic数据增强
:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错
在这里插入图片描述

基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述
在这里插入图片描述

FPN+PAN的结构
在这里插入图片描述
这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-
Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:

==>40×40×255==>20×20×255==>10×10×255

在这里插入图片描述

  • 相关代码

      class Detect(nn.Module):stride = None  # strides computed during build
    onnx_dynamic = False  # ONNX export parameterdef __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layersuper().__init__()self.nc = nc  # number of classesself.no = nc + 5  # number of outputs per anchorself.nl = len(anchors)  # number of detection layersself.na = len(anchors[0]) // 2  # number of anchorsself.grid = [torch.zeros(1)] * self.nl  # init gridself.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor gridself.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output convself.inplace = inplace  # use in-place ops (e.g. slice assignment)def forward(self, x):z = []  # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i])  # convbs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:  # inferenceif self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # whelse:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xywh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # why = torch.cat((xy, wh, y[..., 4:]), -1)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0):d = self.anchors[i].deviceif check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibilityyv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')else:yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()anchor_grid = (self.anchors[i].clone() * self.stride[i]) \.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()return grid, anchor_grid
    

5 模型训练

训练效果如下
在这里插入图片描述
相关代码

#部分代码
def train(hyp, opt, device, tb_writer=None):print(f'Hyperparameters {hyp}')log_dir = tb_writer.log_dir if tb_writer else 'runs/evolve'  # run directorywdir = str(Path(log_dir) / 'weights') + os.sep  # weights directoryos.makedirs(wdir, exist_ok=True)last = wdir + 'last.pt'best = wdir + 'best.pt'results_file = log_dir + os.sep + 'results.txt'epochs, batch_size, total_batch_size, weights, rank = \opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.local_rank# TODO: Use DDP logging. Only the first process is allowed to log.# Save run settingswith open(Path(log_dir) / 'hyp.yaml', 'w') as f:yaml.dump(hyp, f, sort_keys=False)with open(Path(log_dir) / 'opt.yaml', 'w') as f:yaml.dump(vars(opt), f, sort_keys=False)# Configurecuda = device.type != 'cpu'init_seeds(2 + rank)with open(opt.data) as f:data_dict = yaml.load(f, Loader=yaml.FullLoader)  # model dicttrain_path = data_dict['train']test_path = data_dict['val']nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names'])  # number classes, namesassert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data)  # check# Remove previous resultsif rank in [-1, 0]:for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):os.remove(f)# Create modelmodel = Model(opt.cfg, nc=nc).to(device)# Image sizesgs = int(max(model.stride))  # grid size (max stride)imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size]  # verify imgsz are gs-multiples# Optimizernbs = 64  # nominal batch size# default DDP implementation is slow for accumulation according to: https://pytorch.org/docs/stable/notes/ddp.html# all-reduce operation is carried out during loss.backward().# Thus, there would be redundant all-reduce communications in a accumulation procedure,# which means, the result is still right but the training speed gets slower.# TODO: If acceleration is needed, there is an implementation of allreduce_post_accumulation# in https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/run_pretraining.pyaccumulate = max(round(nbs / total_batch_size), 1)  # accumulate loss before optimizinghyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decaypg0, pg1, pg2 = [], [], []  # optimizer parameter groupsfor k, v in model.named_parameters():if v.requires_grad:if '.bias' in k:pg2.append(v)  # biaseselif '.weight' in k and '.bn' not in k:pg1.append(v)  # apply weight decayelse:pg0.append(v)  # all elseif opt.adam:optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentumelse:optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decayoptimizer.add_param_group({'params': pg2})  # add pg2 (biases)print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))del pg0, pg1, 

6 实现效果

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/139879.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

森海塞尔EW-DP SKP直插式发射机:真正的无失真录制

韦德马克,2023年9月15日 – 10月底,EW-DP系列将再添新品——EW-DP SKP直插式发射机,面向摄像师、广播电视公司和电影制作人。板载32位浮点录制,结合该系列领先的134 dB发射机动态范围,让音频失真不复存在。无论要在现场…

【temu】分析拼多多跨境电商Temu数据分析数据采集

Temu是拼多多旗下跨境电商平台,于2022年9月1日在美国、加拿大、新加坡、中国台湾、中国香港等市场上线。本文作者从销售额、销量、产品分布等方面,对Temu产品进行了分析,一起来看一下吧。 item_get获得商品详情item_review获得商品评论列表it…

泛微e-office json_common.php SQL注入漏洞

一、漏洞描述 泛微e-office为企业办公提供丰富应用,覆盖常见协作场景,开箱即用。满足人事、行政、财务、销售、运营、市场等不同部门协作需求,帮助组织高效管事理人。 系统 json_common.php 文件存在SQL注入漏洞 二、网络空间搜索引擎搜索 …

数据结构--B树

目录 回顾二叉查找树 如何保证查找效率 B树的定义 提炼 B树的插入和删除 概括B树的插入方法如下 B树的删除 导致删除时,结点不满足关键字的个数范围时(需要借) 如果兄弟不够借,需要合体 回顾B树的删除 B树 B树的查找 …

Ant Eclipse插件使用

Eclipse默认带了ant插件 编辑build.xml文件给出提示 编辑的时候,会给出提示,方便编辑: 将鼠标放在属性上方,会将属性的值显示出来: 在Eclipse中运行ant 运行默认的target build.xml文件的内容如下,…

Unity DOTS System与SystemGroup概述

最近DOTS终于发布了正式的版本, 我们来分享以下DOTS里面System关键概念,方便大家上手学习掌握Unity DOTS开发。 对惹,这里有一个游戏开发交流小组,希望大家可以点击进来一起交流一下开发经验呀! System是迭代计算与处理World中的…

【JVM】对象内存布局

对象内存布局 文章目录 对象内存布局1. 对象的内存布局2. 对象标记(Mark Word)3. 类元信息(类型指针)4. 实例数据和对象填充 1. 对象的内存布局 在Hotspot虚拟机里,对象在堆内存中的存储布局可以划分为三个部分:对象头(Header)、实例数据(Instance Data…

win11 电脑 使用 python 连接USB 海康工业相机 运行示例程序 BasicDemo.py

win11 电脑 使用 python 连接USB 海康工业相机 运行示例程序 BasicDemo.py 1.下载海康的mvs客户端和mvs_sdk驱动 官网链接: https://www.hikrobotics.com/cn/machinevision/service/download?module0 下载这两个东西,然后安装 1.1 我的mvs安装在 F:\…

我的创作一周年纪念日

目录 机缘收获憧憬 机缘 还真是,像极了<<匆匆>>里的那一段话. “聪明的,你告诉我,我们的日子为什么一去不复返呢?——是有人偷了他们罢:那是谁?又藏在何处呢&#xff1f;是他们自己逃走了罢&#xff1a;现在又到了哪里呢&#xff1f;” 一年的光景就这么过去了…

电厂如何通过PHM提高设备运行可靠性

故障预测与健康管理&#xff08;PHM&#xff09;作为一种先进的技术手段&#xff0c;正在被广泛应用于各个行业&#xff0c;包括发电厂。PHM利用数据收集、分析和利用的方法&#xff0c;可以实现设备状态的实时监测、故障预测和健康评估。本文将介绍PHM的概念和发展现状&#x…

音视频开发岗位,2023年为何持续增加?如何应聘音视频岗位

随着基础设施的完善&#xff08;光纤入户、wifi覆盖、5G普及&#xff09;&#xff0c;加之2020年疫情的影响&#xff0c;将短视频、直播、视频会议、在线教育、在线医疗瞬间推到了顶峰&#xff0c;人们对音视频的需求和要求也越来越强烈。音视频开发是指利用计算机技术和相关编…

Spring framework Day22:Aware接口

前言 在Spring框架中&#xff0c;有许多接口和类都有一个非常重要的作用——让我们能够更方便地构建应用程序和管理组件。其中&#xff0c;Aware接口就是其中一个非常重要的接口之一。通过实现该接口&#xff0c;我们可以让Spring容器感知到特定的组件和资源&#xff0c;并进行…