1--课程表(207)
主要思路:
用 in 记录每一门课程剩余的先修课程个数,当剩余先修课程个数为0时,将该课程加入到队列q中。
每修队列q中的课程,以该课程作为先修课程的所有课程,其剩余先修课程个数减1;
不断将剩余先修课程数为0的课程加入到队列q中,当队列为空时,若修的课程数等于总课程数,则返回true,否则返回false;
#include <iostream>
#include <vector>
#include <queue>class Solution {
public:bool canFinish(int numCourses, std::vector<std::vector<int>>& prerequisites) {std::vector<std::vector<int>> out; // 存储每一个先修课程对应的课程std::vector<int> in; // 存储每一个课程对应的剩余先修课程的个数std::queue<int> q; // 存储可以修的课程out.resize(numCourses);in.resize(numCourses);// 初始化for(auto pair : prerequisites){int cur = pair[0]; // 当前课程int pre = pair[1]; // 当前课程的先修课程out[pre].push_back(cur); // 初始化outin[cur]++;}// 选取可以直接修的课程加入到队列q中for(int i = 0; i < numCourses; i++){if(in[i] == 0) q.push(i);}int num = 0; // 已经修过的课程数while(!q.empty()){int tmp = q.front(); // 修弹出的课程q.pop();num++;// 以tmp作为先修课程的课程,其剩余的先修课程数减1for(auto course : out[tmp]){in[course] --;if(in[course] == 0) q.push(course); // course没有需要先修的课程了,因此可以加入到队列q中}}if(num == numCourses) return true;else return false;}
};int main(int argc, char* argv[]){// numCourses = 2, prerequisites = [[1,0],[0,1]]std::vector<std::vector<int>> test = {{1, 0}, {0, 1}};int numCourses = 2;Solution S1;bool res = S1.canFinish(numCourses, test);if(res) std::cout << "true" << std::endl;else std::cout << "false" << std::endl;return 0;
}
2--实现Trie(前缀树)(208)
主要思路:
参考之前的笔记:前缀树的实现
3--数组中的第K个最大的元素(215)
主要思路:
基于随机化的快排(即随机选取基准元素)划分数组,其时间复杂度为O(n);
根据第K个最大的元素在哪一个数组,继续递归随机化快排,直到找到第K个最大的元素。
#include <iostream>
#include <vector>
#include <queue>class Solution {
public:int findKthLargest(std::vector<int>& nums, int k){return quickSelect(nums, k);}int quickSelect(std::vector<int>& nums, int k){std::vector<int> large;std::vector<int> equal;std::vector<int> less;// 随机选取基准元素int pivot = nums[rand() % nums.size()]; // 返回[0, nums.size()-1]范围内的一个随机数for(int num : nums){if(num > pivot) large.push_back(num);else if(num == pivot) equal.push_back(num);else less.push_back(num);}// large, equal, less// 第k大的元素在large中if(k <= large.size()) return quickSelect(large, k);// 第k大的元素在less中else if(k > (nums.size() - less.size())) return quickSelect(less, k-(nums.size() - less.size()));else return pivot;}
};int main(int argc, char *argv[]){ // [3, 2, 1, 5, 6, 4], k = 2std::vector<int> test = {3, 2, 1, 5, 6, 4};int k = 2;Solution S1;int res = S1.findKthLargest(test, k);std::cout << res << std::endl;return 0;
}
4--最大正方形(221)
主要思路:
基于动态规划,dp[i][j]表示以(i, j)为右下角,所构成正方形的最大边长。
状态转移方程: dp[i][j] = std::min(dp[i-1][j-1], std::min(dp[i-1][j], dp[i][j-1])) + 1;
具体推导参考: 统计全为 1 的正方形子矩阵
#include <iostream>
#include <vector>class Solution {
public:int maximalSquare(std::vector<std::vector<char>>& matrix) {// dp[i][j]表示以(i, j)作为右下角构成正方形的最大边长std::vector<std::vector<int>> dp(matrix.size(), std::vector<int>(matrix[0].size(), 0));// 初始化int max = 0;for(int i = 0; i < matrix.size(); i++){if(matrix[i][0] == '1'){dp[i][0] = 1;max = 1;}}for(int j = 0; j < matrix[0].size(); j++){if(matrix[0][j] == '1'){dp[0][j] = 1;max = 1;}}for(int i = 1; i < matrix.size(); i++){for(int j = 1; j < matrix[0].size(); j++){if(matrix[i][j] == '1'){dp[i][j] = std::min(dp[i-1][j-1], std::min(dp[i-1][j], dp[i][j-1])) + 1;}max = std::max(max, dp[i][j]);}}return max * max; // 返回面积}
};int main(int argc, char *argv[]){ // matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]std::vector<std::vector<char>> test = {{'1', '0', '1', '0', '0'}, {'1', '0', '1', '1', '1'}, {'1', '1', '1', '1', '1'}, {'1', '0', '0', '1', '0'}};Solution S1;int res = S1.maximalSquare(test);std::cout << res << std::endl;return 0;
}
5--翻转二叉树(226)
主要思路:
递归交换左右子树即可。
#include <iostream>
#include <vector>
#include <queue>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution {
public:TreeNode* invertTree(TreeNode* root) {return dfs(root);}TreeNode* dfs(TreeNode* root){if(root == nullptr) return nullptr;TreeNode* left = dfs(root->right);TreeNode* right = dfs(root->left);root->left = left;root->right = right;return root;}
};int main(int argc, char *argv[]){ // root = [4, 2, 7, 1, 3, 6, 9]TreeNode *Node1 = new TreeNode(4);TreeNode *Node2 = new TreeNode(2);TreeNode *Node3 = new TreeNode(7);TreeNode *Node4 = new TreeNode(1);TreeNode *Node5 = new TreeNode(3);TreeNode *Node6 = new TreeNode(6);TreeNode *Node7 = new TreeNode(9);Node1->left = Node2;Node1->right = Node3;Node2->left = Node4;Node2->right = Node5;Node3->left= Node6;Node3->right = Node7;Solution S1;TreeNode *res = S1.invertTree(Node1);// 层次遍历打印std::queue<TreeNode*> q;q.push(res);while(!q.empty()){TreeNode* top = q.front();q.pop();std::cout << top->val << " ";if(top->left != nullptr) q.push(top->left);if(top->right != nullptr) q.push(top->right);}std::cout << std::endl;return 0;
}
6--回文链表(234)
主要思路:
基于快慢指针,将链表划分为两部分,判断两部分是否相同即可。
其中第一部分为链表的前半部分,在快慢指针遍历的时候需要重构链表,将指针前指。
#include <iostream>
#include <vector>struct ListNode {int val;ListNode *next;ListNode() : val(0), next(nullptr) {}ListNode(int x) : val(x), next(nullptr) {}ListNode(int x, ListNode *next) : val(x), next(next) {}
};class Solution {
public:bool isPalindrome(ListNode* head) {// 1 2 2 1// 1 2 1 2 1 ListNode* slow = head;ListNode* fast = head->next;ListNode* pre = nullptr;ListNode* next = nullptr;while(fast != nullptr){// 前指next = slow->next;slow->next = pre;pre = slow;slow = next;fast = fast->next;if(fast == nullptr){break;}fast = fast->next; if(fast == nullptr){slow = slow->next;} }while(slow != nullptr && pre != nullptr){if(slow->val != pre->val) return false;slow = slow->next;pre = pre->next;}return true;}
};int main(int argc, char *argv[]){ // head = [1, 2, 1, 2, 1]ListNode *Node1 = new ListNode(1);ListNode *Node2 = new ListNode(2);ListNode *Node3 = new ListNode(1);ListNode *Node4 = new ListNode(2);ListNode *Node5 = new ListNode(1);Node1->next = Node2;Node2->next = Node3;Node3->next = Node4;Node4->next = Node5;Solution S1;bool res = S1.isPalindrome(Node1);if(res) std::cout << "true" << std::endl;else std::cout << "false" << std::endl;return 0;
}
7--二叉树的最近公共祖先(236)
主要思路:
经典二叉数递归搜索。之前笔记分析过很多次了,主要思想就是递归找到目标节点,返回即可。
#include <iostream>
#include <vector>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};class Solution {
public:TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {return dfs(root, p, q);}TreeNode* dfs(TreeNode* root, TreeNode* p, TreeNode* q){if(root == nullptr || root == p || root == q) return root;TreeNode *left = dfs(root->left, p, q);TreeNode *right = dfs(root->right, p, q);if(left != nullptr && right != nullptr) return root;if(left != nullptr && right == nullptr) return left;else return right;}
};int main(int argc, char argv[]){// root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1TreeNode* Node1 = new TreeNode(3);TreeNode* Node2 = new TreeNode(5);TreeNode* Node3 = new TreeNode(1);TreeNode* Node4 = new TreeNode(6);TreeNode* Node5 = new TreeNode(2);TreeNode* Node6 = new TreeNode(0);TreeNode* Node7 = new TreeNode(8);TreeNode* Node8 = new TreeNode(7);TreeNode* Node9 = new TreeNode(4);Node1->left = Node2;Node1->right = Node3;Node2->left = Node4;Node2->right = Node5;Node3->left = Node6;Node3->right = Node7;Node5->left = Node8;Node5->right = Node9;Solution S1;TreeNode *res = S1.lowestCommonAncestor(Node1, Node2, Node3);std::cout << res->val << std::endl;return 0;
}
8--除自身以外数组的乘积(238)
主要思路:
遍历两遍,第一遍求解L[i],L[i]表示第i位左边所有数的乘积;第二遍求解R[i],R[i]表示第i位右边所有数的乘积。
#include <iostream>
#include <vector>class Solution {
public:std::vector<int> productExceptSelf(std::vector<int>& nums) {// 先计算L[i], L[i]表示第i位左边所有数的乘积std::vector<int> res(nums.size(), 0);res[0] = 1;for(int i = 1; i < nums.size(); i++){res[i] = res[i-1] * nums[i-1];}// 再计算R[i], R[i]表示第i位右边所有数的乘积int R = 1;for(int i = nums.size() - 1; i >= 0; i--){res[i] = res[i] * R;R = R*nums[i];}return res;}
};int main(int argc, char argv[]){// nums = [1, 2, 3, 4]std::vector<int> test = {1, 2, 3, 4};Solution S1;std::vector<int> res = S1.productExceptSelf(test);for(int num : res) std::cout << num << " ";std::cout << std::endl;return 0;
}
9--滑动窗口最大值(239)
主要思路: