【考研数学】数学“背诵”手册 | 需要记忆且容易遗忘的知识点

文章目录

  • 引言
  • 一、高数
    • 常见泰勒展开
    • n n n 阶导数公式
    • 多元微分函数连续、可微、连续可偏导之间的关系
    • 多元函数极值
      • 无条件极值
      • 条件极值
    • 三角函数的积分性质
      • 华里士公式( “点火”公式 )
      • 特殊性质
    • 原函数与被积函数的奇偶性结论
    • 球坐标变换公式
  • 二、线代
    • 施密特正交化
    • 分块矩阵
    • 转置、逆、伴随之间的运算
    • 关于秩
      • 定义
      • 性质
  • 三、概统
    • 常见分布的期望及方差


引言

复习到后期,去做到前面内容的题目时,有一些需要记忆的结论就比较模糊,比如微分方程的特解形式、施密特正交、各种分布的概率密度等等。我便把这些模糊的点都记录下来了,整理在一起,方便随时查阅


一、高数

常见泰勒展开

基本形式: f ( x ) = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n . f(x)=\sum_{n=0}^\infty \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n. f(x)=n=0n!f(n)(x0)(xx0)n. 常见展开式: e x = x n n ! = 1 + x + 1 2 x 2 + ⋯ + 1 n ! x n + ⋯ , − ∞ < x < + ∞ . \pmb{e^x}= \frac{x^n}{n!}=1+x+\frac{1}{2}x^2+\cdots+\frac{1}{n!}x^n+\cdots,-\infty<x<+\infty. ex=n!xn=1+x+21x2++n!1xn+,<x<+∞. ln ⁡ ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 + ⋯ + ( − 1 ) n − 1 x n n + ⋯ , − 1 < x ≤ 1. \ln(1+x)=x-\frac{1}{2}x^2+\frac{1}{3}x^3+\cdots+(-1)^{n-1}\frac{x^n}{n}+\cdots,-1<x\leq1. ln(1+x)=x21x2+31x3++(1)n1nxn+,1<x1. sin ⁡ x = x − 1 3 ! x 3 + 1 5 ! x 5 + ⋯ + ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! + ⋯ , − ∞ < x < + ∞ . \pmb{\sin x}=x-\frac{1}{3!}x^3+\frac{1}{5!}x^5+\cdots+(-1)^n\frac{x^{2n+1}}{(2n+1)!}+\cdots,-\infty<x<+\infty. sinx=x3!1x3+5!1x5++(1)n(2n+1)!x2n+1+,<x<+∞. cos ⁡ x = 1 − 1 2 ! x 2 + 1 4 ! x 4 + ⋯ + ( − 1 ) n x 2 n ( 2 n ) ! + ⋯ , − ∞ < x < + ∞ . \cos x=1-\frac{1}{2!}x^2+\frac{1}{4!}x^4+\cdots+(-1)^{n}\frac{x^{2n}}{(2n)!}+\cdots,-\infty<x<+\infty. cosx=12!1x2+4!1x4++(1)n(2n)!x2n+,<x<+∞. 1 1 + x = 1 − x + x 2 + ⋯ + ( − 1 ) n x n + ⋯ , − 1 < x < 1. \frac{1}{1+x}=1-x+x^2+\cdots+(-1)^nx^n+\cdots,-1<x<1. 1+x1=1x+x2++(1)nxn+,1<x<1. 1 1 − x = 1 + x + x 2 + ⋯ + x n + ⋯ , − 1 < x < 1. \pmb{\frac{1}{1-x}}=1+x+x^2+\cdots+x^n+\cdots,-1<x<1. 1x1=1+x+x2++xn+,1<x<1.

n n n 阶导数公式

分数 1 / ( a x + b ) 1/(ax+b) 1/(ax+b) n n n 阶导数: ( 1 a x + b ) ( n ) = ( − 1 ) n a n n ! ( a x + b ) n + 1 \big(\frac{1}{ax+b}\big)^{(n)}=(-1)^n\frac{a^nn!}{(ax+b)^{n+1}} (ax+b1)(n)=(1)n(ax+b)n+1ann! ( sin ⁡ x ) ( n ) = sin ⁡ ( x + n π 2 ) , ( cos ⁡ x ) ( n ) = cos ⁡ ( x + n π 2 ) (\sin{x})^{(n)}=\sin{(x+\frac{n\pi}{2})},(\cos{x})^{(n)}=\cos{(x+\frac{n\pi}{2})} (sinx)(n)=sin(x+2),(cosx)(n)=cos(x+2)

多元微分函数连续、可微、连续可偏导之间的关系

在这里插入图片描述

多元函数极值

无条件极值

在这里插入图片描述

条件极值

在这里插入图片描述

三角函数的积分性质

华里士公式( “点火”公式 )

首先是在区间 [ 0 , π / 2 ] [0,\pi/2] [0,π/2] sin ⁡ , cos ⁡ \sin,\cos sin,cos 可以互换,即 ∫ 0 π / 2 f ( sin ⁡ x ) d x = ∫ 0 π / 2 f ( cos ⁡ x ) d x \int_0^{\pi/2}f(\sin x)dx=\int_0^{\pi/2}f(\cos x)dx 0π/2f(sinx)dx=0π/2f(cosx)dx 特别地,有华里士公式(点火公式): I n = ∫ 0 π / 2 ( sin ⁡ x ) n d x = ∫ 0 π / 2 ( cos ⁡ x ) n d x = n − 1 n I n − 2 , I 0 = π 2 , I 1 = 1. I_n=\int_0^{\pi/2}(\sin x)^ndx=\int_0^{\pi/2}(\cos x)^ndx=\frac{n-1}{n}I_{n-2},I_0=\frac{\pi}{2},I_1=1. In=0π/2(sinx)ndx=0π/2(cosx)ndx=nn1In2,I0=2π,I1=1. 可以推广到更大的区间,在 [ 0 , π ] [0,\pi] [0,π] 上,由于 sin ⁡ x \sin x sinx 均为正,因此直接点火,乘个 2 就行。 ∫ 0 π ( sin ⁡ x ) n d x = 2 ∫ 0 π / 2 ( sin ⁡ x ) n d x . \int_0^{\pi}(\sin x)^ndx=2\int_0^{\pi/2}(\sin x)^ndx. 0π(sinx)ndx=20π/2(sinx)ndx. cos ⁡ x \cos x cosx 由于一半区间为负,因此奇数次和偶数次,奇数次为 0 (可以记忆为奇函数对称为 0 ),偶数次同样是乘 2 。 ∫ 0 π ( cos ⁡ x ) n d x = 2 ∫ 0 π / 2 ( cos ⁡ x ) n d x \int_0^{\pi}(\cos x)^ndx=2\int_0^{\pi/2}(\cos x)^ndx 0π(cosx)ndx=20π/2(cosx)ndx 对于在区间 [ 0 , 2 π ] [0,2\pi] [0,2π] 上, sin ⁡ , cos ⁡ \sin,\cos sin,cos 均有正有负,因此奇数次为 0 ,偶数次乘一个 4 。 ∫ 0 2 π ( sin ⁡ x ) n d x = ∫ 0 2 π ( cos ⁡ x ) n d x = 4 ∫ 0 π / 2 ( sin ⁡ x ) n d x . \int_0^{2\pi}(\sin x)^ndx=\int_0^{2\pi}(\cos x)^ndx=4\int_0^{\pi/2}(\sin x)^ndx. 02π(sinx)ndx=02π(cosx)ndx=40π/2(sinx)ndx.

特殊性质

[ 0 , π ] [0,\pi] [0,π] 上可以降到 [ 0 , π / 2 ] [0,\pi/2] [0,π/2] 上;证明方法为拆区间,令 t = x − π / 2 t=x-\pi/2 t=xπ/2 ,把后半部分换掉。 ∫ 0 π f ( sin ⁡ x ) d x = 2 ∫ 0 π / 2 f ( sin ⁡ x ) d x , t h e n w e h a v e , ∫ 0 π / 2 f ( sin ⁡ x ) d x = ∫ π / 2 π f ( sin ⁡ x ) d x . \int_0^{\pi}f(\sin x)dx=2\int_0^{\pi/2}f(\sin x)dx,then\space we \space have,\int_0^{\pi/2}f(\sin x)dx=\int_{\pi/2}^{\pi}f(\sin x)dx. 0πf(sinx)dx=20π/2f(sinx)dx,then we have,0π/2f(sinx)dx=π/2πf(sinx)dx. 多一个 x x x 可以提到积分外面来,即 ∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x = π ∫ 0 π / 2 f ( sin ⁡ x ) d x . \int_0^{\pi}xf(\sin x)dx=\frac{\pi}{2}\int_0^{\pi}f(\sin x)dx=\pi\int_0^{\pi/2}f(\sin x)dx. 0πxf(sinx)dx=2π0πf(sinx)dx=π0π/2f(sinx)dx. 证明方法为令 t = x − π t=x-\pi t=xπ

原函数与被积函数的奇偶性结论

  • f ( x ) f(x) f(x) 为奇函数可推出 ∫ a x f ( t ) d t \int_a^x f(t)dt axf(t)dt 为偶函数。
  • f ( x ) f(x) f(x) 为偶函数,不能得到 ∫ a x f ( t ) d t \int_a^x f(t)dt axf(t)dt 为奇函数,但可以得到 ∫ 0 x f ( t ) d t \int_0^x f(t)dt 0xf(t)dt 为奇函数。
  • ∫ a x f ( x ) d x \int_a^x f(x)dx axf(x)dx 为奇/偶函数,一定可以推得 f ( x ) f(x) f(x) 为相反的奇偶性。
  • ∫ a x f ( x ) d x \int_a^x f(x)dx axf(x)dx 为周期函数,一定可以推得 f ( x ) f(x) f(x) 也为周期函数,反之不一定。

球坐标变换公式

r r r 表示几何体上一点到原点距离,从原点引一条射线看范围; θ \theta θ 表示 r r r x O y xOy xOy 平面的投影直线与 x x x 轴正向的夹角,范围是 [ 0 , 2 π ] [0,2\pi] [0,2π] φ \varphi φ 表示和 z z z 轴正向夹角,范围是 [ 0 , π ] [0,\pi] [0,π] ,想象喇叭开花。

变换公式为 { x = r cos ⁡ θ sin ⁡ φ y = r sin ⁡ θ sin ⁡ φ z = r cos ⁡ φ , d x d y d z = r 2 sin ⁡ φ d r d θ d φ . \begin{cases} x=r\cos\theta \sin\varphi\\ y=r\sin \theta \sin\varphi \\ z=r\cos\varphi\end{cases},dxdydz=r^2\sin\varphi \space drd\theta d\varphi. x=rcosθsinφy=rsinθsinφz=rcosφ,dxdydz=r2sinφ drdθdφ.


二、线代

施密特正交化

把一组线性无关的向量组转化为一组两两正交且规范的向量组的过程,称为施密特正交化。

α 1 , α 2 , ⋯ , α n \pmb{\alpha_1,\alpha_2,\cdots,\alpha_n} α1,α2,,αn 线性无关,其正交化过程为:

(1)正交化 l e t β 1 = α 1 , β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 β n = α n − ( α n , β 1 ) ( β 1 , β 1 ) β 1 − ( α n , β 2 ) ( β 2 , β 2 ) β 2 − ⋯ − ( α n , β n − 1 ) ( β n − 1 , β n − 1 ) β n − 1 let\space \pmb{\beta_1=\alpha_1,\beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1}\\ \pmb{\beta_n=\alpha_n-\frac{(\alpha_n,\beta_1)}{(\beta_1,\beta_1)}\beta_1-\frac{(\alpha_n,\beta_2)}{(\beta_2,\beta_2)}\beta_2}-\cdots-\pmb{\frac{(\alpha_n,\beta_{n-1})}{(\beta_{n-1},\beta_{n-1})}\beta_{n-1}} let β1=α1,β2=α2(β1,β1)(α2,β1)β1βn=αn(β1,β1)(αn,β1)β1(β2,β2)(αn,β2)β2(βn1,βn1)(αn,βn1)βn1 则向量组 β 1 , β 2 , ⋯ , β n \pmb{\beta_1,\beta_2,\cdots,\beta_n} β1,β2,,βn 两两正交。
(2)规范化。各自除以各自的模即可。

分块矩阵

首先是行列式,有以下三个结论:

(1) ∣ A 1 A 2 ⋱ A n ∣ = ∣ A 1 ∣ ⋅ ∣ A 2 ∣ ⋯ ∣ A n ∣ . \begin{vmatrix} \pmb{A_1} & & & \\ & \pmb{A_2} & & \\ & & \ddots & \\ & & & \pmb{A_n}\end{vmatrix}=|\pmb{A_1}|\cdot|\pmb{A_2}|\cdots|\pmb{A_n}|. A1A2An =A1A2An∣.

(2) ∣ A C O B ∣ = ∣ A O O B ∣ = ∣ A ∣ ⋅ ∣ B ∣ . \begin{vmatrix} \pmb{A} & \pmb{C}\\ \pmb{O}& \pmb{B} \end{vmatrix}=\begin{vmatrix} \pmb{A} & \pmb{O}\\ \pmb{O}& \pmb{B} \end{vmatrix}=|\pmb{A}|\cdot|\pmb{B}|. AOCB = AOOB =AB∣.

(3)设 A , B \pmb{A,B} A,B 分别为 m , n m,n m,n 阶方阵,则有 ∣ O A B O ∣ = ( − 1 ) m n ∣ A ∣ ⋅ ∣ B ∣ . \begin{vmatrix} \pmb{O} & \pmb{A}\\ \pmb{B}& \pmb{O} \end{vmatrix}=(-1)^{mn}|\pmb{A}|\cdot|\pmb{B}|. OBAO =(1)mnAB∣.

然后是转置的结论: [ A B C D ] T = [ A T C T B T D T ] . \begin{bmatrix} \pmb{A} & \pmb{B}\\ \pmb{C}& \pmb{D} \end{bmatrix}^T=\begin{bmatrix} \pmb{A^T} & \pmb{C^T}\\ \pmb{B^T}& \pmb{D^T} \end{bmatrix}. [ACBD]T=[ATBTCTDT].

接着是逆矩阵的结论: [ A O O B ] − 1 = [ A − 1 O O B − 1 ] , [ O A B O ] − 1 = [ O B − 1 A − 1 O ] . \begin{bmatrix} \pmb{A} & \pmb{O}\\ \pmb{O}& \pmb{B} \end{bmatrix}^{-1}=\begin{bmatrix} \pmb{A^{-1}} & \pmb{O}\\ \pmb{O}& \pmb{B^{-1}} \end{bmatrix},\begin{bmatrix} \pmb{O} & \pmb{A}\\ \pmb{B}& \pmb{O} \end{bmatrix}^{-1}=\begin{bmatrix} \pmb{O} & \pmb{B^{-1}}\\ \pmb{A^{-1}}& \pmb{O} \end{bmatrix}. [AOOB]1=[A1OOB1],[OBAO]1=[OA1B1O].

转置、逆、伴随之间的运算

对可逆矩阵,转置、逆和伴随可以随意交换顺序,即 ( A − 1 ) T = ( A T ) − 1 , ( A ∗ ) − 1 = ( A − 1 ) ∗ , ( A ∗ ) T = ( A T ) ∗ . (\pmb{A}^{-1})^T=(\pmb{A}^{T})^{-1},(\pmb{A}^{*})^{-1}=(\pmb{A}^{-1})^{*},(\pmb{A}^{*})^T=(\pmb{A}^{T})^*. (A1)T=(AT)1,(A)1=(A1),(A)T=(AT).

关于秩

定义

矩阵的秩的定义:

A \pmb{A} A m × n m\times n m×n 矩阵,从中任取 r r r r r r 列,元素按照原有次序构成的 r r r 阶行列式,称为矩阵 A \pmb{A} A r r r 阶子式。若 矩阵 A \pmb{A} A 中至少有一个 r r r 阶子式不为零,但所有 r + 1 r+1 r+1 阶子式(可能没有)均为零,称 r r r 为矩阵 A \pmb{A} A 的秩。

向量组秩的定义:

α 1 , α 2 , ⋯ , α n \pmb{\alpha_1,\alpha_2,\cdots,\alpha_n} α1,α2,,αn 为一组向量,若其存在 r r r 个向量线性无关,且任意 r + 1 r+1 r+1 个向量(不一定有)一定线性相关,称这 r r r 个线性无关的向量构成的向量组为 α 1 , α 2 , ⋯ , α n \pmb{\alpha_1,\alpha_2,\cdots,\alpha_n} α1,α2,,αn 的极大线性无关组,极大线性无关组所含向量的个数,称为向量组的秩。

性质

矩阵的秩有如下性质: r ( A ) = r ( A T ) = r ( A A T ) = r ( A T A ) . [ r ( A ) + r ( B ) − n ] ≤ r ( A + B ) ≤ r ( A ) + r ( B ) . r ( A B ) ≤ min ⁡ { r ( A ) , r ( B ) } . i f A B = O , t h e n , r ( A ) + r ( B ) ≤ n . i f ∣ P ∣ , ∣ Q ∣ ≠ 0 , r ( A ) = r ( P A ) = r ( A Q ) = r ( P A Q ) . r ( A ∗ ) = { n r ( A ) = n 1 r ( A ) = n − 1 0 r ( A ) < n − 1 , ( n ≥ 2 ) . l e t A m × n , B m × s , t h e n , max ⁡ { r ( A ) , r ( A ) } ≤ r ( A ⋮ B ) ≤ r ( A ) + r ( B ) . α , β ≠ 0 , r ( A ) = 1 ⟺ A = α β T . r ( A O O B ) = r ( A ) + r ( A ) . r(\pmb{A})=r(\pmb{A}^T)=r(\pmb{A}\pmb{A}^T)=r(\pmb{A}^T\pmb{A}).\\ [r(\pmb{A})+r(\pmb{B})-n]\leq r(\pmb{A}+\pmb{B})\leq r(\pmb{A})+r(\pmb{B}). \\ r(\pmb{AB})\leq \min\{r(\pmb{A}),r(\pmb{B})\}. \\ if\space \pmb{AB=O},then\space ,r(\pmb{A})+r(\pmb{B})\leq n. \\ if\space |\pmb{P}|,|\pmb{Q}|\ne0,r(\pmb{A})=r(\pmb{PA})=r(\pmb{AQ})=r(\pmb{PAQ}).\\ r(\pmb{A}^*)=\begin{cases} n&r(\pmb{A})=n\\ 1&r(\pmb{A})=n-1\\ 0&r(\pmb{A})<n-1 \end{cases},(n\geq2).\\ let\space \pmb{A}_{m\times n},\pmb{B}_{m\times s},then,\max\{r(\pmb{A}),r(\pmb{A})\}\leq r(\pmb{A}\space\vdots \space B)\leq r(\pmb{A})+r(\pmb{B}). \\ \pmb{\alpha,\beta\ne 0},r(\pmb{A})=1 \pmb{\Longleftrightarrow} \pmb{A}=\pmb{\alpha\beta}^T.\\ r\begin{pmatrix} \pmb{A} & \pmb{O} \\ \pmb{O}& \pmb{B}\end{pmatrix}=r(\pmb{A})+r(\pmb{A}). r(A)=r(AT)=r(AAT)=r(ATA).[r(A)+r(B)n]r(A+B)r(A)+r(B).r(AB)min{r(A),r(B)}.if AB=O,then ,r(A)+r(B)n.if P,Q=0,r(A)=r(PA)=r(AQ)=r(PAQ).r(A)= n10r(A)=nr(A)=n1r(A)<n1,(n2).let Am×n,Bm×s,then,max{r(A),r(A)}r(A  B)r(A)+r(B).α,β=0,r(A)=1A=αβT.r(AOOB)=r(A)+r(A).


三、概统

常见分布的期望及方差

{ 分布 ‾ 分布律或概率密度 ‾ 数学期望 ‾ 方差 ‾ ( 0 − 1 )分布 P { X = k } = p k ( 1 − p ) 1 − k , k = 0 , 1 p p ( 1 − p ) 二项分布 P { X = k } = C n k p k ( 1 − p ) n − k , k = 0 ⋯ n n p n p ( 1 − p ) 泊松分布 P { X = k } = λ k k ! e − λ , k = 0 , 1 , 2 , ⋯ λ λ 正态分布 f ( x ) = 1 2 π σ E X P ( − ( x − μ ) 2 2 σ 2 ) μ σ 2 几何分布 P { X = k } = ( 1 − p ) k − 1 p , k = 1 , 2 , ⋯ 1 / p ( 1 − p ) / p 2 \begin{cases}\underline{分布}&\underline{分布律或概率密度}&\underline{数学期望}&\underline{方差}\\ (0-1)分布&P\{X=k\}=p^k(1-p)^{1-k},k=0,1&p&p(1-p)\\ 二项分布& P\{X=k\}=C_n^kp^k(1-p)^{n-k},k=0\cdots n&np&np(1-p)\\ 泊松分布&P\{X=k\}=\frac{\lambda^k}{k!}e^{-\lambda},k=0,1,2,\cdots&\lambda&\lambda \\ 正态分布 & f(x)=\frac{1}{\sqrt{2\pi}\sigma}E XP(-\frac{(x-\mu)^2}{2\sigma^2})&\mu&\sigma^2\\ 几何分布&P\{X=k\}=(1-p)^{k-1}p,k=1,2,\cdots&1/p&(1-p)/p^2\end{cases} 分布01)分布二项分布泊松分布正态分布几何分布分布律或概率密度P{X=k}=pk(1p)1k,k=0,1P{X=k}=Cnkpk(1p)nk,k=0nP{X=k}=k!λkeλ,k=0,1,2,f(x)=2π σ1EXP(2σ2(xμ)2)P{X=k}=(1p)k1p,k=1,2,数学期望pnpλμ1/p方差p(1p)np(1p)λσ2(1p)/p2 均匀分布: f ( x ) = { 1 / ( b − a ) , a < x < b 0 , e l s e , E ( X ) = a + b 2 , D ( X ) = ( b − a ) 2 12 . f(x)=\begin{cases} 1/(b-a),&a<x<b \\ 0,&else \end{cases},E(X)=\frac{a+b}{2},D(X)=\frac{(b-a)^2}{12}. f(x)={1/(ba),0,a<x<belse,E(X)=2a+b,D(X)=12(ba)2. 指数分布: f ( x ) = { λ e − λ x , x > 0 0 , e l s e , E ( X ) = 1 λ , D ( X ) = 1 λ 2 . f(x)=\begin{cases} \lambda e^{-\lambda x},&x>0 \\ 0,&else \end{cases},E(X)=\frac{1}{\lambda},D(X)=\frac{1}{\lambda^2}. f(x)={λeλx,0,x>0else,E(X)=λ1,D(X)=λ21.


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/152070.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

小程序如何设置首选配送公司

小程序的一个重要环节就是配送服务。为了提供更好的发货体验&#xff0c;避免商家总是要在众多的配送公司中选择想要&#xff0c;小程序支持设置首选配送。下面将具体介绍一下小程序如何设置。 在小程序管理员后台->配送设置->首选配送处&#xff0c;指定需要设置的首选…

uniapp开发小程序 小米手机真机bottom:0无效 底部间隙 设备安全区域处理办法

uniApp自定义导航 CSS设置 bottom:0竟然无效&#xff0c;而iphone和开发模拟器没有问题 height: 150rpx;position: fixed;left: 0;right: 0;bottom: calc(var(--window-bottom,0)); 网上查了各种方法&#xff0c;包括设置bottom:-20啊以及 padding-bottom: constant(safe-are…

基于springboot实现休闲娱乐代理售票平台系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现休闲娱乐代理售票平台系统演示 摘要 网络的广泛应用给生活带来了十分的便利。所以把休闲娱乐代理售票管理与现在网络相结合&#xff0c;利用java技术建设休闲娱乐代理售票系统&#xff0c;实现休闲娱乐代理售票的信息化。则对于进一步提高休闲娱乐代理售票管…

KMS在腾讯云的微服务实践助力其降本50%

背景介绍 KMS 是一家日本的游戏公司&#xff0c;主要经营游戏业务、数字漫画业务、广告业务、云解决方案业务等&#xff0c;出品了多款在日本畅销的漫画风游戏&#xff0c;同时有网络漫画专业厂牌&#xff0c;以内容创作为目标&#xff0c;拥有原创 IP 创作、游戏开发等多元化发…

【Linux】部署单机项目以及前后端分离项目

Linux部署单机项目&#xff1a; 优点&#xff1a; 简化了系统管理&#xff1a;由于所有服务都在同一台机器上运行&#xff0c;因此可以简化系统管理和维护。 提高了性能&#xff1a;由于没有网络延迟和其他因素的影响&#xff0c;所以可以提高系统的性能。 缺点&#xff1a; 容…

*Django中的Ajax 纯js的书写样式1

搭建项目 建立一个Djano项目&#xff0c;建立一个app&#xff0c;建立路径&#xff0c;视图函数大多为render, Ajax的创建 urls.py path(index/,views.index), path(index2/,views.index2), views.py def index(request):return render(request,01.html) def index2(requ…

word行内插入mathtype 公式后行距变大解决办法

现象 word行内插入mathtype 公式后行距变大 解决方法 选中要进行操作的那些行&#xff0c;依次单击菜单命令“格式→段落”&#xff0c;打开“段落”对话框&#xff1b;单击“缩进和间距”选项卡&#xff0c;将间距的“段前”和“段后”都调整为“0行”&#xff1b;将“如果…

《ATTCK视角下的红蓝对抗实战指南》一本书构建完整攻防知识体系

一. 网络安全现状趋势分析 根据中国互联网络信息中心&#xff08;CNNIC&#xff09;发布的第51次《中国互联网络发展状况统计报告》&#xff0c;截至2022年12月&#xff0c;我国网民规模为10.67亿&#xff0c;互联网普及率达75.6%。我国有潜力建设全球规模最大、应用渗透最强的…

Graalvm-21 Windows初体验

前言 除了最新新出的jdk21以外&#xff0c;oracle还推出了重磅的graalvm-jdk-21。这个graalvm可以把java代码编译为本地执行文件&#xff0c;就是把原来的jar包直接打成exe。并且使用打完的exe占用的内存资源更小&#xff0c;启动速度更快&#xff0c;非常适合云平台部署&#…

uni-app:解决异步请求返回值问题

可以使用 Promise 或者回调函数来处理异步请求的返回值。 方法一&#xff1a; Promise处理异步请求的返回值 使用 Promise 可以将异步请求的结果通过 resolve 和 reject 返回&#xff0c;然后通过 .then() 方法获取成功的结果&#xff0c;通过 .catch() 方法获取错误信息。 …

ETL工具Kettle

1 Kettle的基本概念 一个数据抽取过程&#xff0c;主要包括创建一个作业&#xff08;Job&#xff09;&#xff0c;每个作业由一个或多个作业项&#xff08;Job Entry&#xff09;和连接作业项的作业跳&#xff08;Job Hop&#xff09;组成。每个作业项可以是一个转换&#xff…

MySQL 5.7限制general_log日志大小

背景 需求&#xff1a; 在MySQL 5.7.41中开启general_log 并限制其大小&#xff0c;避免快速增长占用硬盘空间。 解决&#xff1a; 通过定时任务&#xff0c;执行简单的脚本&#xff0c;判断general_log 日志的大小&#xff0c;实现对通用查询日志的“每日备份”或“每日清…