Hadoop PseudoDistributed Mode 伪分布式

Hadoop PseudoDistributed Mode 伪分布式加粗样式

hadoop101hadoop102hadoop103
192.168.171.101192.168.171.102192.168.171.103
namenodesecondary namenoderecource manager
datanodedatanodedatanode
nodemanagernodemanagernodemanager
job history
job logjob logjob log

1. 升级内核和软件

yum -y update

2. 安装常用软件

yum -y install gcc gcc-c++ autoconf automake cmake make \zlib zlib-devel openssl openssl-devel pcre-devel \rsync openssh-server vim man zip unzip net-tools tcpdump lrzsz tar wget

3. 关闭防火墙

sed -i 's/SELINUX=enforcing/SELINUX=disabled/g' /etc/selinux/config
setenforce 0
systemctl stop firewalld
systemctl disable firewalld

4. 修改主机名和IP地址

hostnamectl set-hostname hadoop101
hostnamectl set-hostname hadoop102
hostnamectl set-hostname hadoop103
vim /etc/sysconfig/network-scripts/ifcfg-ens32

参考如下:

TYPE="Ethernet"
PROXY_METHOD="none"
BROWSER_ONLY="no"
BOOTPROTO="none"
DEFROUTE="yes"
IPV4_FAILURE_FATAL="no"
IPV6INIT="yes"
IPV6_AUTOCONF="yes"
IPV6_DEFROUTE="yes"
IPV6_FAILURE_FATAL="no"
IPV6_ADDR_GEN_MODE="stable-privacy"
NAME="ens32"
DEVICE="ens32"
ONBOOT="yes"
IPADDR="192.168.171.101"
PREFIX="24"
GATEWAY="192.168.171.2"
DNS1="192.168.171.2"
IPV6_PRIVACY="no"

5. 修改hosts配置文件

vim /etc/hosts

修改内容如下:

192.168.171.101	hadoop101
192.168.171.102	hadoop102
192.168.171.103	hadoop103

重启系统 注意:如果是虚拟机环境请关机 克隆

reboot

6. 下载安装JDK和Hadoop并配置环境变量

在所有主机节点创建软件目录

mkdir -p /opt/soft 

以下操作在 hadoop101 主机上完成

进入软件目录

cd /opt/soft

下载 JDK

wget https://download.oracle.com/otn/java/jdk/8u391-b13/b291ca3e0c8548b5a51d5a5f50063037/jdk-8u391-linux-x64.tar.gz?AuthParam=1698206552_11c0bb831efdf87adfd187b0e4ccf970

下载 hadoop

wget https://dlcdn.apache.org/hadoop/common/hadoop-3.3.5/hadoop-3.3.5.tar.gz

解压 JDK 修改名称

解压 hadoop 修改名称

tar -zxvf jdk-8u391-linux-x64.tar.gz -C /opt/soft/
mv jdk1.8.0_391/ jdk-8
tar -zxvf hadoop-3.3.5.tar.gz -C /opt/soft/
mv hadoop-3.3.5/ hadoop-3

配置环境变量

vim /etc/profile.d/my_env.sh

编写以下内容:

export JAVA_HOME=/opt/soft/jdk-8
export set JAVA_OPTS="--add-opens java.base/java.lang=ALL-UNNAMED"export HDFS_NAMENODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_ZKFC_USER=root
export HDFS_JOURNALNODE_USER=root
export HADOOP_SHELL_EXECNAME=rootexport YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=rootexport HADOOP_HOME=/opt/soft/hadoop-3
export HADOOP_INSTALL=$HADOOP_HOME
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoopexport PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

生成新的环境变量
注意:分发软件和配置文件后 在所有主机执行该步骤

source /etc/profile

7. 配置ssh免密钥登录

创建本地秘钥并将公共秘钥写入认证文件

ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa
ssh-copy-id root@hadoop101
ssh-copy-id root@hadoop102
ssh-copy-id root@hadoop103
ssh root@hadoop101
exit
ssh root@hadoop102
exit
ssh root@hadoop101
exit

8. 修改配置文件

cd  $HADOOP_HOME/etc/hadoop

hadoop-env.sh

core-site.xml

hdfs-site.xml

workers

mapred-site.xml

yarn-site.xml

hadoop-env.sh

hadoop-env.sh 文件末尾追加

export JAVA_HOME=/opt/soft/jdk-8
export set JAVA_OPTS="--add-opens java.base/java.lang=ALL-UNNAMED"export HDFS_NAMENODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_ZKFC_USER=root
export HDFS_JOURNALNODE_USER=root
export HADOOP_SHELL_EXECNAME=rootexport YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=root

core-site.xml

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration><property><name>fs.defaultFS</name><value>hdfs://hadoop101:8020</value></property><property><name>hadoop.tmp.dir</name><value>/home/hadoop_data</value></property><property><name>hadoop.http.staticuser.user</name><value>root</value></property><property><name>dfs.permissions.enabled</name><value>false</value></property><property><name>hadoop.proxyuser.root.hosts</name><value>*</value></property><property><name>hadoop.proxyuser.root.groups</name><value>*</value></property>
</configuration>

hdfs.site.xml

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration><!-- 指定副本数量 --><property><name>dfs.replication</name><value>3</value></property><!-- 指定 secondarynamenode 运行位置 --><property><name>dfs.namenode.secondary.http-address</name><value>hadoop102:50090</value></property>
</configuration>

workers

注意:

​ hadoop2.x中该文件名为slaves

​ hadoop3.x中该文件名为workers

hadoop101
hadoop102
hadoop103

mapred-site.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration><property><name>mapreduce.framework.name</name><value>yarn</value></property><property><name>mapreduce.application.classpath</name><value>$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*:$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/*</value></property><!-- yarn历史服务端口 --><property><name>mapreduce.jobhistory.address</name><value>hadoop102:10020</value></property><!-- yarn历史服务web访问端口 --><property><name>mapreduce.jobhistory.webapp.address</name><value>hadoop102:19888</value></property>
</configuration>

yarn-site.xml

<?xml version="1.0"?>
<configuration><!-- 指定YARN的主角色(ResourceManager)的地址 --><property><name>yarn.resourcemanager.hostname</name><value>hadoop103</value></property><property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value></property><property><name>yarn.nodemanager.env-whitelist</name><value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_HOME,PATH,LANG,TZ,HADOOP_MAPRED_HOME</value></property><!-- 是否将对容器实施物理内存限制 --><property><name>yarn.nodemanager.pmem-check-enabled</name><value>false</value></property><!-- 是否将对容器实施虚拟内存限制。 --><property><name>yarn.nodemanager.vmem-check-enabled</name><value>false</value></property><!-- 开启日志聚集 --><property><name>yarn.log-aggregation-enable</name><value>true</value></property><!-- 设置yarn历史服务器地址 --><property><name>yarn.log.server.url</name><value>http://hadoop102:19888/jobhistory/logs</value></property><!-- 保存的时间7天 --><property><name>yarn.log-aggregation.retain-seconds</name><value>604800</value></property>
</configuration>

9. 分发软件和配置文件

分发 ssh 免密钥

scp -r ~/.ssh root@hadoop102:~/
rsync -av --progress  ~/.ssh root@hadoop103:~/

分发 hosts 文件

rsync -v --progress /etc/hosts root@hadoop102:/etc/
rsync -v --progress /etc/hosts root@hadoop103:/etc/

分发软件

rsync -av --progress /opt/soft/jdk-8 root@hadoop102:/opt/soft
rsync -av --progress /opt/soft/hadoop-3 root@hadoop102:/opt/soft
rsync -av --progress /opt/soft/jdk-8 root@hadoop103:/opt/soft
rsync -av --progress /opt/soft/hadoop-3 root@hadoop103:/opt/soft

分发环境变量

rsync -v --progress /etc/profile.d/my_env.sh root@hadoop102:/etc/profile.d/
rsync -v --progress /etc/profile.d/my_env.sh root@hadoop103:/etc/profile.d/

在所有主机节点 使新的环境变量生效

source /etc/profile

10. 初始化集群

hadoop101

# 格式化文件系统
hdfs namenode -format
# 启动 NameNode SecondaryNameNode DataNode 
start-dfs.sh
# 查看启动进程
jps
# hadoop101 看到 NameNode DataNode
# hadoop102 看到 SecondaryNameNode DataNode
# hadoop101 看到 DataNode

hadoop103

# 启动 ResourceManager daemon 和 NodeManager
start-yarn.sh
# 查看启动进程
jps
# hadoop101 看到 NameNode DataNode NodeManager
# hadoop102 看到 SecondaryNameNode DataNode NodeManager
# hadoop101 看到 DataNode ResourceManager NodeManager

hadoop102

# 启动 JobHistoryServer
mapred --daemon start historyserver
# 查看启动进程
jps
# hadoop101 看到 NameNode DataNode NodeManager
# hadoop102 看到 SecondaryNameNode DataNode NodeManager JobHistoryServer
# hadoop101 看到 DataNode ResourceManager NodeManager

重点提示:

# 关机之前 依关闭服务
# Hadoop102
mapred --daemon stop historyserver
# hadoop103
stop-yarn.sh
# hadoop101
stop-dfs.sh
# 开机后 依次开启服务
# hadoop101
start-dfs.sh
# hadoop103
start-yarn.sh
# hadoop102
mapred --daemon start historyserver

11. 修改windows下hosts文件

C:\Windows\System32\drivers\etc\hosts

追加以下内容:

192.168.171.101	hadoop101
192.168.171.102	hadoop102
192.168.171.103	hadoop103

Windows11 注意 修改权限

  1. 开始搜索 cmd

找到命令头提示符 以管理身份运行

以管理员身份运行命令提示符cmd

命令提示符cmd

  1. 进入 C:\Windows\System32\drivers\etc 目录

    cd drivers/etc
    

    C:\Windows\System32\drivers\etc

  2. 去掉 hosts文件只读属性

    attrib -r hosts
    

    在这里插入图片描述

  3. 打开 hosts 配置文件

    start hosts
    

    C:\Windows\System32\drivers\etc

  4. 追加以下内容后保存

    192.168.171.101	hadoop101
    192.168.171.102	hadoop102
    192.168.171.103	hadoop103
    

12. 测试

12.1 浏览器访问hadoop集群

浏览器访问: http://hadoop101:9870

namnode
datanodes

浏览器访问:http://hadoop102:50090/

secondarynamenode

浏览器访问:http://hadoop103:8088

resourcemanager

浏览器访问:http://hadoop102:19888/

JobHistoryServer

12.2 测试 hdfs

本地文件系统创建 测试文件 wcdata.txt

vim wcdata.txt
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive

在 HDFS 上创建目录 /wordcount/input

hdfs dfs -mkdir -p /wordcount/input

查看 HDFS 目录结构

hdfs dfs -ls /
hdfs dfs -ls /wordcount
hdfs dfs -ls /wordcount/input

上传本地测试文件 wcdata.txt 到 HDFS 上 /wordcount/input

hdfs dfs -put wcdata.txt /wordcount/input

检查文件是否上传成功

hdfs dfs -ls /wordcount/input
hdfs dfs -cat /wordcount/input/wcdata.txt

12.2 测试 mapreduce

计算 PI 的值

hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.5.jar pi 10 10

单词统计

hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.5.jar wordcount /wordcount/input/wcdata.txt /wordcount/result
hdfs dfs -ls /wordcount/result
hdfs dfs -cat /wordcount/result/part-r-00000

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/157694.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【深度学习】pytorch——实现CIFAR-10数据集的分类

笔记为自我总结整理的学习笔记&#xff0c;若有错误欢迎指出哟~ 往期文章&#xff1a; 【深度学习】pytorch——快速入门 CIFAR-10分类 CIFAR-10简介CIFAR-10数据集分类实现步骤一、数据加载及预处理实现数据加载及预处理归一化的理解访问数据集Dataset对象Dataloader对象 二、…

UI设计一定不能错过的4款常用工具

虽然设计审美很重要&#xff0c;但软件只是一种工具&#xff0c;但就像走楼梯和坐电梯到达顶层一样&#xff0c;电梯的效率显然更高&#xff0c;易于使用的设计工具也是如此。让我们了解一下UI设计的主流软件&#xff0c;以及如何选择合适的设计软件。 即时设计 软件介绍 即…

【数据结构复习之路】数组和广义表(严蔚敏版)万字详解主打基础

专栏&#xff1a;数据结构复习之路 复习完上面三章【线性表】【栈和队列】【串】&#xff0c;我们接着复习数组和广义表&#xff0c;这篇文章我写的非常详细且通俗易懂&#xff0c;看完保证会带给你不一样的收获。如果对你有帮助&#xff0c;看在我这么辛苦整理的份上&#xf…

Go Metrics SDK Tag 校验性能优化实践

背景 Metrics SDK 是与字节内场时序数据库 ByteTSD 配套的用户指标打点 SDK&#xff0c;在字节内数十万服务中集成&#xff0c;应用广泛&#xff0c;因此 SDK 的性能优化是个重要和持续性的话题。本文主要以 Go Metrics SDK 为例&#xff0c;讲述对打点 API 的 hot-path 优化的…

《AI时代架构师修炼之道:ChatGPT让架构师插上翅膀》

本专注于帮助架构师在AI时代 实现晋级、提高效率的图书 书中介绍了如何使用 ChatGPT 来完成架构设计的各个环节 并通过实战案例展示了ChatGPT在实际架构设计中的应用方法 关键点 1.架构设计新模式&#xff1a;让架构设计更高效、更快捷、更完美。 2.全流程解析&#xff1a;涵盖…

物联网整体框架有哪些层面?

物联网是当前非常火热的话题&#xff0c;各个行业对物联网的关注和投入力度也很大&#xff0c;一些互联网巨头都在紧锣密鼓的布局物联网产业&#xff0c;抢占市场先机。 物联网的整体构架大致可以分为以下四个层面&#xff1a; 1.感知识别层 感知层是物联网整体架构的基础&…

项目级asp.net框架的LIMS实验室管理系统源码

LIMS可用于管理完整的实验程序&#xff0c;从样品登记到检验、校核、审核到最终批准报告&#xff0c;建立在过程质量控制的基础上&#xff0c;对检测流程进行有效全面的管理&#xff0c;对影响质量的人、机、料、法、环因素加以控制&#xff0c;同时为质量改进提供数据依据。进…

Azure - 机器学习:使用 Apache Spark 进行交互式数据整理

目录 本文内容先决条件使用 Apache Spark 进行交互式数据整理Azure 机器学习笔记本中的无服务器 Spark 计算从 Azure Data Lake Storage (ADLS) Gen 2 导入和整理数据从 Azure Blob 存储导入和处理数据从 Azure 机器学习数据存储导入和整理数据 关注TechLead&#xff0c;分享AI…

文件夹批量重命名:如何利用上级目录给多个文件夹进行高效重命名

在文件管理中&#xff0c;我们经常需要处理大量的文件和文件夹。其中&#xff0c;文件名过长或混乱的问题经常让我们感到困扰。这不仅影响了我们的工作效率&#xff0c;还可能导致一些错误。为了解决这个问题&#xff0c;我们可以用云炫文件管理器将“上级目录”批量重命名文件…

【STM32】基于HAL库建立自己的低功耗模式配置库(STM32L4系列低功耗所有配置汇总)

【STM32】基于HAL库建立自己的低功耗模式配置库&#xff08;STM32L4系列低功耗所有配置汇总&#xff09; 文章目录 低功耗模式&#xff08;此章节可直接跳过&#xff09;低功耗模式简介睡眠模式停止模式待机模式 建立自己的低功耗模式配置库通过结构体的方式来进行传参RTC配置…

java入门,JSONObject实现源码解析

一、前言 现在写java程序&#xff0c;很少需要写一些底层的数据结构和算法&#xff0c;因为这些轮子早已造好&#xff0c;拿来用就行。比如在代码中我们经常用到的这个类JSONObject &#xff0c;还有我们经常使用的String类型&#xff0c;它都是有底层实现的&#xff0c;我们直…

Django 社区志愿者管理系统

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 社区志愿者服务管理系统&#xff0c;主要的模块包括查看首页、个人中心、通知公告管理、志愿者管理、普通管理员管理、志愿活动管理、活动宣…