管理类联考——数学——汇总篇——知识点突破——代数——函数、方程——记忆

文章目录

  • 考点
    • 记忆/考点汇总——按大纲
  • 整体+局部

本篇思路:根据各方的资料,比如名师的资料,按大纲或者其他方式,收集/汇总考点,即需记忆点,在通过整体的记忆法,比如整体信息很多,通常使用记忆宫殿法,绘图记忆法进行记忆,针对局部/细节/组成的部分,可通过多种方法,比如联想记忆法、理解记忆法等进行进一步记忆。

考点

通过汇总各方大佬资料,作为收集考点/记忆点的信息输入:XX,收集汇总如下:

汇总考点的必要,或者说,汇总记忆的内容的必要,不言而喻,首先,你要记忆东西,得有东西,所以你要梳理出你需要记忆的全部东西,其次,在收集多个大佬的梳理的考点,又可以找出各条逻辑帮助记忆考点,所以,梳理考点是很有必要的,是记忆的基础,是记忆宫殿里面的物品,是我们最后考试需要去找到的解题物品。

记忆/考点汇总——按大纲

——一元二次函数——【图像→交点】
—— a x 2 + b x + c = y ax^2+bx+c=y ax2+bx+c=y二次函数核心在于“图像”:整体可以由: 图像(形状,上下,交点) ⟹ \Longrightarrow △ △ ⟹ \Longrightarrow 抛物线与x轴交点 ⟹ \Longrightarrow 交点图形
1.三种函数形式
一般式 y = a x 2 + b x + c ( a ≠ 0 ) y=ax^2+bx+c(a≠0) y=ax2+bx+c(a=0)
配方式/顶点式 y = a ( x + b 2 a ) 2 + 4 a c − b 2 4 a y=a(x+\frac{b}{2a})^2+\frac{4ac-b^2}{4a} y=a(x+2ab)2+4a4acb2,对称轴为 x = − b 2 a x=-\frac{b}{2a} x=2ab,顶点坐标为 ( − b 2 a , 4 a c − b 2 4 a ) (-\frac{b}{2a},\frac{4ac-b^2}{4a}) (2ab,4a4acb2)
两根式 y = a ( x − x 1 ) ( x − x 2 ) y=a(x-x_1)(x-x_2) y=a(xx1)(xx2) x 1 , x 2 x_1,x_2 x1,x2是函数的两个根,对称轴为 x = x 1 + x 2 2 x=\frac{x_1+x_2}{2} x=2x1+x2

2.图像特点
图像形状:二次函数 y = a x 2 + b x + c ( a ≠ 0 ) y=ax^2+bx+c(a≠0) y=ax2+bx+c(a=0)的图像是一条抛物线——【图像的全身】
开口方向:由a决定,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。——【图像的嘴巴】
对称轴:以 x = − b 2 a x=-\frac{b}{2a} x=2ab为对称轴。——【图像的比例】
顶点坐标 ( − b 2 a , 4 a c − b 2 4 a ) (-\frac{b}{2a},\frac{4ac-b^2}{4a}) (2ab,4a4acb2)——【图像的头部】
y轴截距:c。
最值:当a>0(a<0)时,有最小(大)值 4 a c − b 2 4 a \frac{4ac-b^2}{4a} 4a4acb2,无最大(小)值。
单调性:当a>0时,抛物线开口向上,函数在 ( − ∞ , − b 2 a ] (-∞,-\frac{b}{2a}] (,2ab]上递减,在 [ − b 2 a , + ∞ ) [-\frac{b}{2a},+∞) [2ab,+)上递增,当 x = − b 2 a x=-\frac{b}{2a} x=2ab时, f ( x ) m i n = 4 a c − b 2 4 a f(x)_{min}=\frac{4ac-b^2}{4a} f(x)min=4a4acb2;当 a < 0 a<0 a0时,抛物线开口向下,函数在 ( − ∞ , − b 2 a ] (-∞,-\frac{b}{2a}] (,2ab]上递增,在 [ − b 2 a , + ∞ ) [-\frac{b}{2a},+∞) [2ab,+)上递减,当 x = − b 2 a x=-\frac{b}{2a} x=2ab时, f ( x ) m a x = 4 a c − b 2 4 a f(x)_{max}=\frac{4ac-b^2}{4a} f(x)max=4a4acb2。——【】
交点图像:当 △ = b 2 − 4 a c > 0 △=b^2-4ac>0 =b24ac>0时,函数图象与x轴有两个不同的交点 M 1 ( x 1 , 0 ) , M 2 ( x 2 , 0 ) M_1(x_1,0),M_2(x_2,0) M1(x1,0),M2(x2,0),则 ∣ M 1 M 2 ∣ = ∣ x 1 − x 2 ∣ = △ ∣ a ∣ |M_1M_2|=|x_1-x_2|=\frac{\sqrt{△}}{|a|} M1M2=x1x2=a 。——【图像的内部】

3.图像与x轴的位置
已知函数 y = a x 2 + b x + c y=ax^2+bx+c y=ax2+bx+c与x轴交点的个数,可知
(1)若函数与x轴有2个交点,则 a ≠ 0 和△ = b 2 − 4 a c > 0 a≠0和△=b^2-4ac>0 a=0=b24ac0;——【【易错点】此类题易忘掉一元二次函数(方程、不等式)的二次项系数不能为0。要使用 △ = b 2 − 4 a c △=b^2-4ac =b24ac,必先看二次项系数是否为0。】
(2)若函数与x轴有1个交点,即抛物线与x轴相切或图像是一条直线,则 a ≠ 0 和△ = b 2 − 4 a c = 0 a≠0和△=b^2-4ac=0 a=0=b24ac=0;或 a = 0 和 b ≠ 0 a=0和b≠0 a=0b=0
(3)若函数与轴没有交点,则 a ≠ 0 和△ = b 2 − 4 a c < 0 a≠0和△=b^2-4ac<0 a=0=b24ac0 a = b = 0 和 c ≠ 0 a=b=0和c≠0 a=b=0c=0
(4)图像始终位于x轴上方,则 a > 0 和△ = b 2 − 4 a c < 0 a>0和△=b^2-4ac<0 a0=b24ac0
(5)图像始终位于x轴下方,则 a < 0 和△ = b 2 − 4 a c < 0 a<0和△=b^2-4ac<0 a0=b24ac0

  1. 图像与一次函数的交点
    二次函数 y = a x 2 + b x + c y=ax^2+bx+c y=ax2+bx+c与一次函数 y = k x + m y=kx+m y=kxm交点情况有三种,利用数形结合思想,令两函数值相等,得到新的一元二次方程 a x 2 + b x + c − ( k x + m ) = 0 ax^2+bx+c-(kx+m)=0 ax2+bxc(kx+m)=0
    (1)2个交点:新的一元二次方程 △> 0 △>0 0
    (2)1个交点:①一次函数与二次函致相切,新的一元二次方程 △ = 0 △=0 =0。特别地,在顶点处相切时, k = 0 k=0 k=0,一次函数为 y = 4 a c − b 2 4 a y=\frac{4ac-b^2}{4a} y=4a4acb2。②一次函数垂直于x轴,k不存在。
    (3)0个交点:新的一元二次方程 △< 0 △<0 0

——其他函数——【记图像可辅助记忆性质】
正比例函数 y = k x ( k ≠ 0 ) y=kx(k≠0) y=kx(k=0),定义域为 R R R,值域为 R R R,单调性为 k > 0 k>0 k0时,单调递增; k < 0 k<0 k0时,单调递减,图像是“一条直线”
反比例函数 y = k x ( k 为常数, k ≠ 0 ) y=\frac{k}{x}(k为常数,k≠0) y=xk(k为常数,k=0),定义域为{ x ∣ x ≠ 0 x|x≠0 xx=0},单调性为k>0时,在区间 ( − ∞ , 0 ) , ( 0 , + ∞ ) (-∞,0),(0,+∞) (,0),(0,+)上单调递减;k<0时,在区间 ( − ∞ , 0 ) , ( 0 , + ∞ ) (-∞,0),(0,+∞) (,0),(0,+)上单调递增,值域为{ y ∣ y ≠ 0 y|y≠0 yy=0},图像是“两条圆心对称的圆弧”
对勾函数 y = x + 1 x y=x+\frac{1}{x} y=x+x1,定义域为{ x ∣ x ≠ 0 x|x≠0 xx=0},值域为 ( − ∞ , − 2 ) ∪ ( 2 , + ∞ ) (-∞,-2)∪(2,+∞) (,2)(2,+),单调性为在区间 ( − ∞ , − 1 ) , ( 1 , + ∞ ) (-∞,-1),(1,+∞) (,1),(1,+)上单调递增;在区间 ( − 1 , 0 ) , ( 0 , 1 ) (-1,0),(0,1) (1,0),(0,1)上单调递减,图像是“两条圆心对称的耐特勾”
指数函数 y = a x ( a > 0 , a ≠ 1 ) y=a^x(a>0,a≠1) y=ax(a0,a=1),定义域为 ( − ∞ , + ∞ ) (-∞,+∞) (,+),值域 ( 0 , + ∞ ) (0,+∞) (0,+),单调性为当 a > 1 a>1 a1时,函数严格单调递增/增函数;当 0 < a < 1 0<a<1 0a1时,函数严格单调递减/减函数。图像恒过点 ( 0 , 1 ) ,是一条弧线 (0,1),是一条弧线 (0,1),是一条弧线
对数函数 y = l o g a x ( a > 0 , a ≠ 1 ) y=log_ax(a>0,a≠1) y=logax(a0,a=1),定义域为 ( 0 , + ∞ ) (0,+∞) (0,+),值域 全体实数 R 全体实数R 全体实数R,它与 y = a x y=a^x y=ax互为反函数,图像恒过点 ( 1 , 0 ) ,是一条“弧线” (1,0),是一条“弧线” (1,0),是一条弧线。单调性为当 a > 1 a>1 a1时,是增函数;当 0 < a < 1 0<a<1 0a1时,是减函数。
指数运算 a m ⋅ a n = a m + n a^m·a^n=a^{m+n} aman=am+n a m ÷ a n = a m − n a^m÷a^n=a^{m-n} am÷an=amn ( a m ) n = a m n (a^m)n=a^{mn} (am)n=amn a 0 = 1 a^0=1 a0=1 a − n = 1 a n a^{-n}=\frac{1}{a^n} an=an1 a m n = a m n a^{\frac{m}{n}}=\sqrt[n]{a^m} anm=nam
对数运算:当 a > 0 a>0 a0 a ≠ 1 a≠1 a=1时, m > 0 m>0 m0 n > 0 n>0 n0,则:
同底对数: l o g a m + l o g a n = l o g a m n log_am+log_an=log_amn logam+logan=logamn
同底对数: l o g a m − l o g a n = l o g a m n log_am-log_an=log_a\frac{m}{n} logamlogan=loganm
幂运算: l o g a m b n = n m l o g a b log_{a^m}b^n=\frac{n}{m}log_ab logambn=mnlogab m = 1 m=1 m=1时, l o g a b n = n l o g a b log_ab^n=nlog_ab logabn=nlogab m = n m=n m=n时, l o g a m b n = l o g a b log_{a^m}b^n=log_ab logambn=logab
换底公式: l o g a b = l o g c b l o g c a = l g b l g a = l n b l n a log_ab=\frac{log_cb}{log_ca}=\frac{lgb}{lga}=\frac{lnb}{lna} logab=logcalogcb=lgalgb=lnalnb l o g a b = 1 l o g b a log_ab=\frac{1}{log_ba} logab=logba1 l o g a M = l o g b M ÷ l o g b a ( b > 0 且 b ≠ 1 ) log_aM=log_bM÷log_ba(b>0且b≠1) logaM=logbM÷logba(b0b=1),一般c取10或e。
常用对数:以10为底的对数, l o g 10 N log_{10}N log10N,简记为 l g N lgN lgN
自然对数:以无理数e(e=2.71828…)为底的对数, l o g e N log_eN logeN,简记为 l n N lnN lnN
特殊对数: l o g a 1 = 0 log_a1=0 loga1=0 l o g a a = 1 log_aa=1 logaa=1,负数和零没有对数, a l o g a b = b a^{log_ab}=b alogab=b l o g a a s = s log_aa^s=s logaas=s
最值函数
最大值函数: m a x ∣ x , y , z ∣ max|x,y,z| maxx,y,z表示 x , y , z x,y,z x,y,z中最大的数;本质为: m a x max max{ a , b , c a,b,c a,b,c} ≥ a ≥a a m a x max max{ a , b , c a,b,c a,b,c} ≥ b ≥b b m a x max max{ a , b , c a,b,c a,b,c} ≥ c ≥c c。对于函数而言, m a x max max{ f ( x ) , g ( x ) f(x),g(x) f(x),g(x)}表示各函数图像中最高的部分。
最小值函数: m i n ∣ x , y , z ∣ min|x,y,z| minx,y,z表示 x , y , z x,y,z x,y,z中最小的数。本质为: m i n min min{ a , b , c a,b,c a,b,c} ≤ a ≤a a m i n min min{ a , b , c a,b,c a,b,c} ≤ b ≤b b m i n min min{ a , b , c a,b,c a,b,c} ≤ c ≤c c。对于函数而言, m i n min min{ f ( x ) , g ( x ) f(x),g(x) f(x),g(x)}表示各函数图像中最低的部分。
对于max函数图像,先画出各函数图像,然后取上方部分;对于min函数图像,先画出各函数图像,然后取下方部分。
绝对值函数
y = ∣ a x + b ∣ y=|ax+b| y=ax+b先画 y = a x + b y=ax+b y=ax+b的图像,再将x轴下方的图像翻到x轴上方。
y = ∣ a x 2 + b x + c ∣ y=|ax^2+bx+c| y=ax2+bx+c的图像,再将x轴下方的图像翻到x轴上方。
y = a x 2 + b ∣ x ∣ + c y=ax^2+b|x|+c y=ax2+bx+c先画 y = a x 2 + b x + c y=ax^2+bx+c y=ax2+bx+c的图像,再将y轴左侧图像删掉,替换成y轴右侧对称过来的图像。
∣ a x + b y ∣ = c b |ax+by|=cb ax+by=cb表示两条平行的直线 a x + b y = ± c ax+by=±c ax+by=±c,且两者关于原点对称。
∣ a x ∣ + ∣ b y ∣ = c |ax|+|by|=c ax+by=c,当 a = b a=b a=b时,表示正方形,当 a ≠ b a≠b a=b时,表示菱形。
∣ x y ∣ + a b = a ∣ x ∣ + b ∣ y ∣ |xy|+ab=a|x|+b|y| xy+ab=ax+by ∣ x y ∣ + a b = a ∣ x ∣ + b ∣ y ∣ |xy|+ab=a|x|+b|y| xy+ab=ax+by ⟹ \Longrightarrow ∣ x y ∣ − a ∣ x ∣ − b ∣ y ∣ + a b = 0 |xy|-a|x|-b|y|+ab=0 xyaxby+ab=0 ⟹ \Longrightarrow ∣ x ∣ ( ∣ y ∣ − a ) − b ( ∣ y ∣ − a ) = 0 |x|(|y|-a)-b(|y|-a)=0 x(ya)b(ya)=0 ⟹ \Longrightarrow ( ∣ x ∣ − b ) ( ∣ y ∣ − a ) = 0 (|x|-b)(|y|-a)=0 (xb)(ya)=0 ⟹ \Longrightarrow ∣ x ∣ = b |x|=b x=b ∣ y ∣ = a |y|=a y=a, 故表示由 x = ± b , y = ± a x=±b,y=±a x=±b,y=±a围成的图形,当 a = b a=b a=b时,表示正方形,当 a ≠ b a≠b a=b时,表示矩形。
分段函数
分段函数:对于其定义域内的自变量x的不同值,不能用一个统一的解析式表示,而是要用两个或两个以上的式子表示。分段函数表示不同的取值范围对应不同的表达式。对于分段函数,根据不同取值区间,选择不同的表达式代入求解。
复合函数
已知函数 y = f ( u ) y=f(u) y=f(u),又 u = g ( x ) u=g(x) u=g(x),则称函数 y = f ( g ( x ) ) y=f(g(x)) y=f(g(x))为函数 y = f ( u ) y =f(u) y=f(u) u = g ( x ) u =g(x) u=g(x)的复合函数.其中y称为因变量,x称为自变量,u称为中间变量。
注意: g ( x ) g(x) g(x)的值域对应 y = f ( u ) y=f(u) y=f(u)的定义域。对于复合函数,可以将内部的函数看成一个整体进行分析。此外,内部函数的值域对应外部函数的定义域。
复合函数的单调性——【同增异减】
在这里插入图片描述

——一元二次方程——【核心为“根”:求根,根的多少/判别式,根与系数,根的正负,根的范围/区间】
一元二次方程:只含一个未知数,且未知数的最高次数是2的方程。——【类比记忆法:一元二次方程其实是一元二次函数的函数值为0时的情况】

求根解法
(1)十字相乘因式分解法:先用十字相乘进行分解,分解后可以求出方程的根。
(2)求根公式法:如果无法用十字相乘分解,可以套用求根公式: x 1 , 2 = − b ± △ 2 a = − b ± b 2 − 4 a c 2 a x_{1,2}=\frac{-b±\sqrt{△}}{2a}=\frac{-b±\sqrt{b^2-4ac}}{2a} x1,2=2ab± =2ab±b24ac ——
【根判别式 △ △ ⟹ \Longrightarrow 求根公式 x 1 , 2 x_{1,2} x1,2= − b ± △ 2 a \frac{-b±\sqrt{△}}{2a} 2ab±
⟹ \Longrightarrow 韦达定理为 x 1 + x 2 = − b + △ 2 a + − b − △ 2 a = − b a x_1+x_2=\frac{-b+\sqrt{△}}{2a}+\frac{-b-\sqrt{△}}{2a}=-\frac{b}{a} x1+x2=2ab 2ab =ab
⟹ \Longrightarrow 韦达定理为 x 1 ⋅ x 2 = − b + b 2 − 4 a c 2 a ∗ − b − b 2 − 4 a c 2 a = c a x_1·x_2=\frac{-b+\sqrt{b^2-4ac}}{2a}*\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{c}{a} x1x2=2abb24ac 2abb24ac =ac
⟹ \Longrightarrow 弦长公式为 ∣ x 1 − x 2 ∣ = ∣ − b + △ 2 a − − b − △ 2 a ∣ = △ ∣ a ∣ |x_1-x_2|=|\frac{-b+\sqrt{△}}{2a}-\frac{-b-\sqrt{△}}{2a}|=\frac{\sqrt{△}}{|a|} x1x2=2ab 2ab =a
⟹ \Longrightarrow 顶点△面积为 1 2 ⋅ ∣ y ∣ ⋅ ∣ x 1 − x 2 ∣ = ∣ -△ 4 a ∣ ∗ △ ∣ a ∣ = ( △ ) 3 8 a 2 \frac{1}{2}·|y|·|x_1-x_2|=|\frac{-△}{4a}|*\frac{\sqrt{△}}{|a|}=\frac{(\sqrt{△})^3}{8a^2} 21yx1x2=4aa =8a2( )3

根的多少/判别式
△ = b 2 − 4 a c △=b^2-4ac =b24ac称为一元二次方程根的判别式
△> 0 △>0 0时,方程有两个不相等的实根;当 △ = 0 △=0 =0时,方程有两个相等的实根;当 △< 0 △<0 0时,方程没有实根。
方程 a x 2 + b x + c = 0 ( a ≠ 0 ) ax^2+bx+c=0(a≠0) ax2+bx+c=0(a=0)有两个不相等的实数根 ⟺ ⟺ 函数 y = a x 2 + b x + c ( a ≠ 0 ) y=ax^2+bx+c(a≠0) y=ax2+bx+c(a=0)与x轴有两个交点 ⟺ ⟺ △> 0 △>0 0。——【要 a ≠ 0 a≠0 a=0& △> 0 △>0 0
方程 a x 2 + b x + c = 0 ( a ≠ 0 ) ax^2+bx+c=0(a≠0) ax2+bx+c=0(a=0)有两个相等的实数根 ⟺ ⟺ 函数 y = a x 2 + b x + c ( a ≠ 0 ) y=ax^2+bx+c(a≠0) y=ax2+bx+c(a=0)与x轴有一个交点 ⟺ ⟺ △ = 0 △=0 =0。——【要 a ≠ 0 a≠0 a=0& △ = 0 △=0 =0
方程 a x 2 + b x + c = 0 ( a ≠ 0 ) ax^2+bx+c=0(a≠0) ax2+bx+c=0(a=0)没有实数根 ⟺ ⟺ 函数 y = a x 2 + b x + c ( a ≠ 0 ) y=ax^2+bx+c(a≠0) y=ax2+bx+c(a=0)与x轴没有交点 ⟺ ⟺ △< 0 △<0 0。——【要 a ≠ 0 a≠0 a=0& △< 0 △<0 0
—— △ △ 判别式
⟹ \Longrightarrow b 2 − 4 a c b^2-4ac b24ac
⟹ \Longrightarrow △ △ >0,方程有两根,即求根公式 x 1 , 2 x_{1,2} x1,2= − b ± △ 2 a \frac{-b±\sqrt{△}}{2a} 2ab± ,图像抛物线与x轴有两个交点 ⟹ \Longrightarrow 韦达定理
⟹ \Longrightarrow △ △ =0,方程有一根, x x x − b 2 a -\frac{b}{2a} 2ab,图像抛物线与x轴有一个交点
⟹ \Longrightarrow △ △ <0,方程无根,图像抛物线与x轴没有交点
⟹ \Longrightarrow y y y的最值为 4 a c − b 2 4 a \frac{4ac-b^2}{4a} 4a4acb2 -△ 4 a \frac{-△}{4a} 4a
⟹ \Longrightarrow △ △ >0,图像的弦长公式为 △ ∣ a ∣ \frac{\sqrt{△}}{|a|} a
⟹ \Longrightarrow △ △ >0,图像的顶点△面积为 ( △ ) 3 8 a 2 \frac{(\sqrt{△})^3}{8a^2} 8a2( )3

根与系数关系/韦达定理
x 1 , x 2 x_1,x_2 x1,x2是方程 a x 2 + b x + c = 0 ( a ≠ 0 且△ ≥ 0 ) ax^2+bx+c=0(a≠0且△≥0) ax2+bx+c=0(a=00)的两根 ⟹ \Longrightarrow x 1 + x 2 = − b a x_1+x_2=-\frac{b}{a} x1+x2=ab x 1 ⋅ x 2 = c a x_1·x_2=\frac{c}{a} x1x2=ac ∣ x 1 − x 2 ∣ = b 2 − 4 a c ∣ a ∣ |x_1-x_2|=\frac{\sqrt{b^2-4ac}}{|a|} x1x2=ab24ac
一元三次方程 a x 3 + b x 2 + c x + d = 0 ax^3+bx^2+cx+d=0 ax3+bx2+cx+d=0的韦达定理 ⟹ \Longrightarrow x 1 + x 2 + x 3 = − b a x_1+x_2+x_3=-\frac{b}{a} x1+x2+x3=ab x 1 x 2 x 3 = − d a x_1x_2x_3=-\frac{d}{a} x1x2x3=ad x 1 x 3 + x 2 x 3 + x 1 x 3 = c a x_1x_3+x_2x_3+x_1x_3=\frac{c}{a} x1x3+x2x3+x1x3=ac
韦达定理使用前提:——【条件充分性问题判断】
(1)方程 a x 2 + b x + c = 0 ax^2+bx+c=0 ax2+bx+c=0的二次系数 a ≠ 0 a≠0 a=0
(2)一元二次方程 a x 2 + b x + c = 0 ax^2+bx+c=0 ax2+bx+c=0根的判别式 △ = b 2 − 4 a c ≥ 0 △=b^2-4ac≥0 =b24ac0
——求根公式
x 1 , 2 x_{1,2} x1,2= − b ± △ 2 a \frac{-b±\sqrt{△}}{2a} 2ab±
⟹ \Longrightarrow 韦达定理为 x 1 + x 2 = − b + △ 2 a + − b − △ 2 a = − b a x_1+x_2=\frac{-b+\sqrt{△}}{2a}+\frac{-b-\sqrt{△}}{2a}=-\frac{b}{a} x1+x2=2ab 2ab =ab
⟹ \Longrightarrow 韦达定理为 x 1 ⋅ x 2 = − b + b 2 − 4 a c 2 a ∗ − b − b 2 − 4 a c 2 a = c a x_1·x_2=\frac{-b+\sqrt{b^2-4ac}}{2a}*\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{c}{a} x1x2=2abb24ac 2abb24ac =ac
⟹ \Longrightarrow 弦长公式为 ∣ x 1 − x 2 ∣ = ∣ − b + △ 2 a − − b − △ 2 a ∣ = △ ∣ a ∣ |x_1-x_2|=|\frac{-b+\sqrt{△}}{2a}-\frac{-b-\sqrt{△}}{2a}|=\frac{\sqrt{△}}{|a|} x1x2=2ab 2ab =a
⟹ \Longrightarrow 顶点△面积为 1 2 ⋅ ∣ y ∣ ⋅ ∣ x 1 − x 2 ∣ = ∣ -△ 4 a ∣ ∗ △ ∣ a ∣ = ( △ ) 3 8 a 2 \frac{1}{2}·|y|·|x_1-x_2|=|\frac{-△}{4a}|*\frac{\sqrt{△}}{|a|}=\frac{(\sqrt{△})^3}{8a^2} 21yx1x2=4aa =8a2( )3

韦达定理拓展/根的高次幂
1 x 1 + 1 x 2 = x 1 + x 2 x 1 x 2 \frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2} x11+x21=x1x2x1+x2
1 x 1 2 + 1 x 2 2 = ( x 1 + x 2 ) 2 − 2 x 1 x 2 ( x 1 x 2 ) 2 \frac{1}{x_1^2}+\frac{1}{x_2^2}=\frac{(x_1+x_2)^2-2x_1x_2}{(x_1x_2)^2} x121+x221=(x1x2)2(x1+x2)22x1x2
∣ x 1 − x 2 ∣ = ( x 1 − x 2 ) 2 = x 1 + x 2 2 − 4 x 1 x 2 |x_1-x_2|=\sqrt{(x_1-x_2)^2}=\sqrt{{x_1+x_2}^2-4x_1x_2} x1x2=(x1x2)2 =x1+x224x1x2
x 1 2 + x 2 2 = ( x 1 + x 2 ) 2 − 2 x 1 x 2 x_1^2+x_2^2=(x_1+x_2)^2-2x_1x_2 x12+x22=(x1+x2)22x1x2
x 1 2 − x 2 2 = ( x 1 + x 2 ) ( x 1 − x 2 ) x_1^2-x_2^2=(x_1+x_2)(x_1-x_2) x12x22=(x1+x2)(x1x2)
x 1 3 + x 2 3 = ( x 1 + x 2 ) ( x 1 2 − x 1 x 2 + x 2 2 ) = ( x 1 + x 2 ) [ ( x 1 + x 2 ) 2 − 3 x 1 x 2 ] x_1^3+x_2^3=(x_1+x_2)(x_1^2-x_1x_2+x_2^2)=(x_1+x_2)[(x_1+x_2)^2-3x_1x_2] x13+x23=(x1+x2)(x12x1x2+x22)=(x1+x2)[(x1+x2)23x1x2]
根的高次幂问题:先通过迭代将次法,将所求代数式降低次数,再利用韦达定理求值。

根的符号/正负:——【两看:根个数看△,正负看韦达定理/abc符号】
(1)方程有两个正根——【等价于:ab异号、ac同号且△≥0】 { x 1 + x 2 > 0 x 1 x 2 > 0 △ ≥ 0 两个不等正根为△>0 \begin{cases} x_1+x_2>0\\ x_1x_2>0\\ △≥0 & \text{两个不等正根为△>0} \end{cases} x1+x20x1x200两个不等正根为0
(2)方程有两个负根——【等价于:a、b、c同号且△≥0】 { x 1 + x 2 < 0 x 1 x 2 > 0 △ ≥ 0 两个不等正根为△>0 \begin{cases} x_1+x_2<0\\ x_1x_2>0\\ △≥0& \text{两个不等正根为△>0} \end{cases} x1+x20x1x200两个不等正根为0
(3)方程有一正一负根——【等价为:a、c异号=ac<0】 { x 1 ⋅ x 2 < 0 △> 0 ac<0此时必有△>0,此条件可不写 \begin{cases} x_1·x_2<0\\ △>0& \text{ac<0此时必有△>0,此条件可不写} \end{cases} {x1x200ac0此时必有0,此条件可不写
若再要求 ∣ 正根 ∣ > ∣ 负根 ∣ |正根|>|负根| 正根负根,有——【等价为:a、c异号;a、b异号】 { x 1 ⋅ x 2 < 0 ⟺ac<0 x 1 + x 2 > 0 ⟺ab<0 \begin{cases} x_1·x_2<0& \text{⟺ac<0} \\ x_1+x_2>0& \text{⟺ab<0} \\ \end{cases} {x1x20x1+x20⟺ac0⟺ab0
若再要求 ∣ 负根 ∣ > ∣ 正根 ∣ |负根|>|正根| 负根正根,有——【等价为:a、c异号;a、b同号】 { x 1 ⋅ x 2 < 0 ⟺ac<0 x 1 + x 2 < 0 ⟺ab>0 \begin{cases} x_1·x_2<0& \text{⟺ac<0} \\ x_1+x_2<0& \text{⟺ab>0} \\ \end{cases} {x1x20x1+x20⟺ac0⟺ab0

根的区间:——【区间根问题,常使用“两点式”解题法,即看顶点(横坐标相当于看对称轴,纵坐标相当于看△)、看端点(根所分布区间的端点)】——【两根位于不同区间,仅看端点;位于相同区间,需看两点】
设一元二次方程 a x 2 + b x + c = 0 ax^2+bx+c=0 ax2+bx+c=0 f ( x ) f(x) f(x),根为 x 1 , x 2 x_1,x_2 x1,x2。为了讨论方便,我们只讨论 a > 0 a>0 a0的情况,考试时,如果a的符号不定,则需要先讨论开口方向。
(1)两根位于不同区间——【仅看端点(根所分布区间的端点)】
① 若 a > 0 a>0 a>0,方程的一根大于1,另外一根小于1,即 x 1 < 1 < x 2 x_1<1<x_2 x11x2,则有 f ( 1 ) < 0 f(1)<0 f(1)0(看端点)。
② 若 a > 0 a>0 a0,方程的根 x 1 x_1 x1位于区间 ( 1 , 2 ) (1,2) (1,2)上, x 2 x_2 x2位于区间 ( 3 , 4 ) (3,4) (34) x 1 < x 2 x_1<x_2 x1x2,则有
{ f ( 1 ) > 0 f ( 2 ) < 0 (看端点) f ( 3 ) < 0 f ( 4 ) > 0 \begin{cases} f(1)>0\\ f(2)<0& \text{(看端点)}\\ f(3)<0\\ f(4)>0 \end{cases} f(1)0f(2)0f(3)0f(4)0(看端点)
(2)两根位于同一区间——【需看“两点”,即看顶点(横坐标相当于看对称轴,纵坐标相当于看△)、看端点(根所分布区间的端点)】——【同一区间反而更不自由,相比不同区间,少了两个端点,所以找了对称轴和△来帮忙】
① 若 a > 0 a>0 a0,方程的根 x 1 x_1 x1 x 2 x_2 x2均位于区间 ( 1 , 2 ) (1,2) (1,2)上,则有
{ f ( 1 ) > 0 (看端点) f ( 2 ) > 0 (看端点) 1 < − b 2 a < 2 (看顶点,只依赖端点,会出现顶点不在区间内,在区间左边,也可以满足上述两端点的要求,所以需要对称轴进行限制) △ ≥ 0 (图像可能不与x轴相交,所以需要△进行限制) \begin{cases} f(1)>0& \text{(看端点)}\\ f(2)>0& \text{(看端点)}\\ 1<-\frac{b}{2a}<2& \text{(看顶点,只依赖端点,会出现顶点不在区间内,在区间左边,也可以满足上述两端点的要求,所以需要对称轴进行限制)}\\ △≥0& \text{(图像可能不与x轴相交,所以需要△进行限制)} \end{cases} f(1)0f(2)012ab20(看端点)(看端点)(看顶点,只依赖端点,会出现顶点不在区间内,在区间左边,也可以满足上述两端点的要求,所以需要对称轴进行限制)(图像可能不与x轴相交,所以需要进行限制)
② 若 a > 0 a>0 a0,方程的根 x 2 > x 1 > 1 x_2>x_1>1 x2x11,则有
{ f ( 1 ) > 0 (看端点) − b 2 a > 1 (看顶点) △> 0 (定相交) \begin{cases} f(1)>0& \text{(看端点)}\\ -\frac{b}{2a}>1& \text{(看顶点)}\\ △>0& \text{(定相交)} \end{cases} f(1)02ab10(看端点)(看顶点)(定相交)
PS:此处需要将方程转换成图像,图形结合进行理解。

y的最值
若已知方程 a x 2 + b x + c = 0 ax^2+bx+c=0 ax2+bx+c=0的两根为 x 1 , x 2 x_1,x_2 x1,x2,则 y = a x 2 + b x + c ( a ≠ 0 ) y=ax^2+bx+c(a≠0) y=ax2+bx+c(a=0)的最值为 f ( x 1 + x 2 2 ) f(\frac{x_1+x_2}{2}) f(2x1+x2)

四次方程或绝对值方程的根
判断形如 a ∣ x ∣ 2 + b ∣ x ∣ + c = 0 ( a ≠ 0 ) a|x|^2+b|x|+c=0(a≠0) ax2+bx+c=0(a=0)或者 a x 4 + b x 2 + c = 0 ( a ≠ 0 ) ax^4+bx^2+c=0(a≠0) ax4+bx2+c=0(a=0)的方程根的情况(相等的根算作1个)。
解题方法:
换元法,令 t = ∣ x ∣ t=|x| t=x t = x 2 t=x^2 t=x2,则原式化为 a t 2 + b t + c = 0 ( a ≠ 0 ) at^2+bt+c=0(a≠0) at2bt+c=0(a=0),其中 t ≥ 0 t≥0 t0,则有:
(1)关于x的方程有4个不等实数 ⟺ \Longleftrightarrow 关于t的方程有2个不等正根;
(2)关于x的方程有3个不等实根 ⟺ \Longleftrightarrow 关于t的方程有1个根是0,另外1个根是正数;
(3)关于x的方程有2个不等实根 ⟺ \Longleftrightarrow 关于t的方程有2个相等正根,或者有1个正根1个负根(负根应舍去);
(4)关于x的方程有1个实根 ⟺ \Longleftrightarrow 关于t的方程的根为0,或者1个根为0,另外一个根是负数(应舍去);
(5)关于x的方程无实根 ⟺ \Longleftrightarrow 关于t的方程无实根,或者根为负数(应舍去)。
这样,就转化成了正负根问题。

——其他方程——
分式方程
求解步骤:
第一步:移项,通分,将原方程转化为标准形式:
第二步:去分母,使 f ( x ) = 0 f(x)=0 f(x)=0,解出 x = x 0 x=x_0 x=x0
第三步:验根:将 x = x 0 x=x_0 x=x0代入 g ( x ) g(x) g(x),若 g ( x 0 ) g(x_0) g(x0)=0,则 = x 0 =x_0 =x0为增根,应舍去;若 g ( x 0 ) ≠ 0 g(x_0)≠0 g(x0)=0,则 x = x 0 x=x_0 x=x0为原方程的根。

根式方程
求解步骤:关键在于去根号和考虑根式是否有意义
f ( x ) = g ( x ) \sqrt{f(x)}=g(x) f(x) =g(x)型根式方程:解方程组 f ( x ) = g 2 ( x ) f(x)=g^2(x) f(x)=g2(x)& f ( x ) ≥ 0 f(x)≥0 f(x)0& g ( x ) ≥ 0 g(x)≥0 g(x)0
f ( x ) = 0 f(\sqrt{x})=0 f(x )=0型根式方程:①令 x = t ( t ≥ 0 ) \sqrt{x}=t(t≥0) x =t(t0);②原方程转化为 f ( t ) = 0 f(t)=0 f(t)=0的形式并求解得到t的值(注意 t < 0 t<0 t0的值要舍去);③原方程的解为 x = t 2 x=t^2 x=t2

绝对值方程
常用处理绝对值的方法:
(1)分段讨论法
根据绝对值的正负情况来分类讨论,其缺点是运算量较大,只有当绝对值比较简单时,才分段讨论求解。
(2)平方法
采用平方来去掉绝对值,利用公式 ∣ x ∣ 2 = x 2 |x|^2=x^2 x2=x2来分析求解,平方法的缺点是次方升高,一般结合平方差公式来转移此缺点。
(3)图像法

整体+局部

管理类联考——数学——汇总篇——知识点突破——代数——函数、方程、不等式——记忆——整体+局部

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/157763.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Day17力扣打卡

打卡记录 参加会议的最多员工数&#xff08;拓扑排序 分类讨论&#xff09; 链接 计算内向基环树的最大基环&#xff0c;基环树基环为2的情况分类讨论。 class Solution { public:int maximumInvitations(vector<int> &favorite) {int n favorite.size();vector…

动作捕捉系统进行坐标系转换

动作捕捉系统在机器人等应用中常出现被测物与动捕坐标系不一致的问题。这时就需要进行坐标系的转换。在NOKOV度量动作捕捉系统软件中&#xff0c;可以对被测物的坐标系原点偏移量进行设置&#xff0c;实现被测物坐标系与大地坐标系的重合。 一、坐标系偏移操作 在形影动捕软件…

IOI车机系统刷机和改包笔记2 - 改包脚本

前言&#xff1a; 最近对雪佛兰改包需求感兴趣的网友很多&#xff0c;大家都遇上了很多奇怪的问题&#xff0c;这里就我自己使用的环境和脚本进行分享&#xff0c;供大家参考。 1. 准备环境 我这里使用Ubuntu系统进行操作 andyandy-vm:~$ sudo lsb_release -a No LSB module…

影视企业有哪些方式将视频文件快速海外跨国传输国内?

影视行业是一个高度国际化的行业&#xff0c;影视企业在跨国合作、制作、发行等方面有着强烈的需求。然而&#xff0c;影视企业在跨国文件传输方面也面临着诸多的问题和难题。视频文件通常具有较大的文件大小、多样的文件格式、高要求的文件质量等特点&#xff0c;这些特点使得…

【Midjourney入门教程4】与AI对话,写好prompt的必会方法

文章目录 1、语法2、单词3、要学习prompt 框架4、善用参数&#xff08;注意版本&#xff09;5、善用模版6、临摹7、垫图 木匠不会因为电动工具的出现而被淘汰&#xff0c;反而善用工具的木匠&#xff0c;收入更高了。 想要驾驭好Midjourney&#xff0c;可以从以下方面出发调整&…

代码随想录 Day35 动态规划04 01背包问题和完全背包问题 LeetCode T416 分割等和子集

背包问题 说到背包问题大家都会想到使用动规的方式来求解,那么为什么用动规呢,dp数组代表什么呢?初始化是什么,遍历方式又是什么,这篇文章笔者将详细讲解背包问题的经典例题0-1背包问题和完全背包问题的解题方式,希望能帮助到大家 1.暴力方式 有人一提到背包问题就只会使用动态…

Mybatis学习

一、 1.第一个mybatis程序 层层递进&#xff0c;SqlSession用来执行sql语句&#xff0c;SqlSession是与数据库的一次会话。 通过SqlSessionFactory获取SqlSession 通过SqlSessionBuilder的build()方法获取SessionFactory 2.第一个程序就找了30分钟的错&#xff08;悲惨&…

3.字符集和比较规则简介

3.字符集和比较规则简介 1.字符集和比较规则简介1.1 字符集简介1.2 比较规则简介1.3 一些重要的比较规则 2. MySQL 中支持的字符集和比较规则2.1 MySQL 的 utf8 和 utf8mb42.2 字符集查看2.3 比较规则查看 3. 字符集和比较规则的应用3.1 各级别的字符集和比较规则1. 服务器级别…

STM32F103C8T6第一天:认识STM32 标准库与HAL库 GPIO口 推挽输出与开漏输出

1. 课程概述&#xff08;297.1&#xff09; 课程要求&#xff1a;C语言熟练&#xff0c;提前学完 C51 2. 开发软件Keil5的安装&#xff08;298.2&#xff09; 开发环境的安装 编程语言&#xff1a;C语言需要安装的软件有两个&#xff1a;Keil5 和 STM32CubeMX Keil5 的安装…

如何将 ruby 打包类似于jdk在另一台相同架构的机器上面开箱即用

需求 目前工作中使用到了ruby作为java 项目的中转语言&#xff0c;但是部署ruby的时候由于环境的不同会出现安装依赖包失败的问题&#xff0c;如何找到一种开箱即用的方式类似于java 中的jdk内置jvm这种方式 解决 TruffleRuby 完美解决问题&#xff0c;TruffleRuby 是使用 T…

驱动开发11-2 编写SPI驱动程序-点亮数码管

驱动程序 #include <linux/init.h> #include <linux/module.h> #include <linux/spi/spi.h>int m74hc595_probe(struct spi_device *spi) {printk("%s:%d\n",__FILE__,__LINE__);char buf[]{0XF,0X6D};spi_write(spi,buf,sizeof(buf));return 0; …

Hugging Face LLM部署大语言模型到亚马逊云科技Amazon SageMaker推理示例

本篇文章主要介绍如何使用新的Hugging Face LLM推理容器将开源LLMs&#xff0c;比如BLOOM大型语言模型部署到亚马逊云科技Amazon SageMaker进行推理的示例。我们将部署12B Open Assistant Model&#xff0c;这是一款由开放助手计划训练的开源Chat LLM。 这个示例包括&#xff1…