Flutter 07 框架和三棵树(Widgets、Elements和RenderObjects)

一、Flutter框架的整体结构:

Flutter是Google推出并开源的跨平台开发框架,主打跨平台、高保真、高性能。开发者可以通过Dart语 言开发Flutter应用,一套代码同时运行在ios和Android平台。不仅如此,Flutter还支持Web、桌面、嵌 入应用的开发。Flutter提供了丰富的组件、接口,开发者可以很快地为Flutter添加native扩展。同时 Flutter还使用skia引擎渲染视图,这无疑能为用户提供良好的体验。 下面来看一下Flutter框架的整体结构组成:

Flutter主要有三个主要组成部分:框架层、引擎层、平台层。

框架层:

Flutter框架建立在Dart语言的基础上:

Foundation:Framework的最底层叫Foundation,其中定义的大都是非常基础的、提供给其他所 有层使用的工具类和方法;

Animation:动画相关的类库;

Painting:绘制库(Painting)封装了Flutter Engine提供的绘制接口,主要是为了在绘制控制等固 定样式的图形时提供更直观、更方便的接口,比如绘制缩放后的位图、绘制文本、插值生成阴影以 及在盒子周围绘制边框等等;

Gesture:提供了手势识别相关的功能,包括触摸事件类定义和多种内置的手势识别器;

Widgets:在Flutter中一切UI皆widget,Flutter有两大不同风格的widget库:

        1)一个是基于Material Design(材料设计)风格的组件库;

        2)一个是基于cupertino的ios设计风格的组件库。 

引擎层:

Flutter引擎使用的是基于c++的2D图形库(称为Skia)。在这一层中,提供了Dart VM,以提供一个执 行环境,用于将Dart代码转换为本地平台可执行代码。Flutter引擎在Android、ios中运行,以为widget 呈现对应的外观,并根据特定平台通过Channel进行通信;

平台层:

Flutter根据不同平台提供了其特定的shell(既Android Shell和IOS Shell),这些shell用来托管Dart VM,以提供对特定的平台API的访问;

二、Flutter绘制原理:

熟悉Flutter绘制原理有助于我们了解Flutter框架的原理机制。为了熟悉Flutter绘制原理,我们先从屏幕 显示图像的基本原理开始说起:

我们在买显示器时,都会关注显示器的刷新频率;那么对于手机屏幕也是一样的,通常手机屏幕的刷新 频率是60Hz,当然现在也有不少高刷新频率的手机也在推出,如:90Hz,120Hz。

一般来说,计算机系统中,CPU、GPU和显示器以一种特定的方式协作:CPU将计算好的显示内容提交 给GPU,GPU渲染后放放帧缓冲区,然后视频控制器按照VSync信号从帧缓冲区取帧数据传递给显示器 显示。当一帧图像绘制完毕后准备绘制下一帧时,显示器就会发出一个垂直同步信号(VSync),所以 60Hz的屏幕就会一秒内发生60次这样的信号。

上面是CPU、GPU和显示器协作方式,对于Flutter也不例外,Flutter也遵循了这种模式: 

GPU的VSync信号同步给到UI线程,UI线程使用Dart来构建抽象的视图结构,这份数据结构在GPU线程 进行图层合成,视图数据提供给 Skia引擎渲染为 GPU数据,这些数据通过 OpenGL或者 Vulkan提供给 GPU。

三、Android UI绘制原理浅析:

在上面Flutter绘制原理的阐述中提到最终交由Skia引擎来进行图形渲染,听到这个词是不是可以联想到 我们的Android呢?所以这里转一个视角,对Android UI的绘制原理进行一个简单回顾:

说到Android的UI绘制自然离不了Canvas,Android上层的UI绘制几乎都通过Canvas来完成的,那么 Canvas又是怎么完成UI绘制的呢,接下来就让我们来通过追踪源码来一探究竟,下面以Canvas绘制圆 形这个API来例进行分析:

Canvas.java:drawCircle

其中它的父类是:

BaseCanvas.java:drawCircle  

BaseCanvas.java:nDrawCircle

此时就进入了c++的世界了。

Canvas.cpp:drawCircle

SkCanvas.h:drawCircle 

由此可以看出Android UI绘制最终还是交给Skia来完成的。

四、Flutter渲染流程:

在Flutter框架中存在着一个渲染流程(Rendering pipline)。这个渲染流水线是由垂直同步信号 (Vsync)驱动的,而Vsync信号是由系统提供的,如果你的Flutter app是运行在Android上的话,那 Vsync信号就是我们熟悉的Android那个Vsync信号。

当Vsync信号到来以后,Fluttter框架会按照图里的顺序执行一系列动作:

1.动画(Animate)

2.构建(Build)

3.布局(Layout)

4.绘制(Paint)

最终生成一个场景(Scene)之后送往底层,由GPU绘制到屏幕上。 

1、动画(Animate)阶段:因为动画会随每个Vsync信号的到来而改变状态(State),所以动画阶段 是流水线的第一个阶段;

2、构建(Build)在这个阶段Flutter,在这个阶段那些需要被重新构建的Widget会在此时被重新构 建。也就是我们熟悉的StatelessWidget.build()或者State.build()被调用的时候;

3、布局(Layout)阶段:这时会确定各个显示元素的位置,尺寸;此时是 RenderObject.performLayout()被调用的时候;

4、绘制(Paint)阶段:此时是RenderObject.paint()被调用的时候;

以上是整个渲染流程的一个大致的工作过程。

五、Flutter组件的生命周期:

createState():当框架要创建一个StatefulWidget时,它会立即调用State的createState();

initState():当State的构造方法被执行后,会调用一次initState(),需要指出的是initState()在State 生命周期内只被调用一次;

build():这个方法会被经常调用,比如:setState以及配置改变都会触发build()方法的调用;

didUpdateConfig():当收到一个新的config时调用;

setState():当需要修改页面状态,比如刷新数据等的时候我们可以通过调用setState来实现;

dispose():当移除State对象时,将调用dispose();通常在该方法中进行取消订阅,取消所有动画 ,流等操作; 

六、Flutter渲染机制之三棵树:

Flutter是一个优秀的UI框架,借助它开箱即用的Widgets我们能够构建出漂亮和高性能的用户界面。那 这些Widgets到底是如何工作的又是如何完成渲染的。 所以接下来就来探析Widgets背后的故事-Flutter渲染机制之三棵树。

什么是三棵树?

在Flutter中和Widgets一起协同工作的还有另外两个伙伴:Elements和RenderObjects;由于它们都是有着树形结构,所以经常会称它们为三棵树。

1)Widget:Widget是Flutter的核心部分,是用户界面的不可变描述。做Flutter开发接触最多的就是 Widget,可以说Widget撑起了Flutter的半边天;

2)Element:Element是实例化的 Widget 对象,通过 Widget 的 createElement() 方法,是在特定位 置使用 Widget配置数据生成;

3)RenderObject:用于应用界面的布局和绘制,保存了元素的大小,布局等信息; 

初次运行时的三棵树:

初步认识了三棵树之后,那Flutter是如何创建布局的?以及三棵树之间他们是如何协同的呢?接下来就 让我们通过一个简单的例子来剖析下它们内在的协同关系:

class ThreeTree extends StatelessWidget {@overrideWidget build(BuildContext context) {return Container(color: Colors.red,child: Container(color: Colors.blue));}
}

上面这个例子很简单,它由三个Widget组成:ThreeTree、Container、Text。那么当Flutter的 runApp()方法被调用时会发生什么呢?下面在Flutter工程中先来构建这么一个简单的示例:

运行一下:

此时可以打开“Flutter Inspector”:

那第二棵树在哪里呢?此时需要跟一下源码了:

总结一下就是:

当runApp()被调用时,第一时间会在后台发生以下事件:

1)Flutter会构建包含这三个Widget的Widgets树;

2)Flutter遍历Widget树,然后根据其中的Widget调用createElement()来创建相应的Element对象, 最后将这些对象组建成Element树;

3)接下来会创建第三个树,这个树中包含了与Widget对应的Element通过createRenderObject()创建 的RenderObject;

而整个状态过程可以用下图来描述: 

从图中可以看出Flutter创建了三个不同的树,一个对应着Widget,一个对应着Element,一个对应着 RenderObject。每一个Element中都有着相对应的Widget和RenderObject的引用。可以说Element是存在于可变Widget树和不可变RenderObject树之间的桥梁。Element擅长比较两个Object,在Flutter里面就是Widget和RenderObject。它的作用是配置好Widget在树中的位置,并且保持对于相对应的 RenderObject和Widget的引用。 

三棵树的作用:

那这三棵树有啥意义呢?简而言之是为了性能,为了复用Element从而减少频繁创建和销毁 RenderObject。因为实例化一个RenderObject的成本是很高的,频繁的实例化和销毁RenderObject对 性能的影响比较大,所以当Widget树改变的时候,Flutter使用Element树来比较新的Widget树和原来的 Widget树,接下来从源码中来体会一下:

此时也是只更新对应的element,接下来继续:

总结如下:

1)如果某一个位置的Widget和新Widget不一致,才需要重新创建Element;

2)如果某一个位置的Widget和新Widget一致时(两个widget相等或runtimeType与key相等),则只需要修改RenderObject的配置,不用进行耗费性能的RenderObject的实例化工作了;

3)因为Widget是非常轻量级的,实例化耗费的性能很少,所以它是描述APP的状态(也就是configuration)的最好工具;

4)重量级的RenderObject(创建十分耗费性能)则需要尽可能少的创建,并尽可能的复用;

因为在框架中,Element是被抽离开来的,所以你不需要经常和它们打交道。每个Widget的build (BuildContext context)方法中传递的context就是实现了BuildContext接口的Element。

更新时的三棵树:

那如果此时我们修改一下程序:

因为Widget是不可变的,当某个Widget的配置改变的时候,整个Widget树都需要被重建。例如当我们改变一个Container的颜色为橙色的时候,框架就会触发一个重建整个Widget树的动作。因为有了Element的存在,Flutter会比较 新的Widget树中的第一个Widget和之前的Widget。接下来比较Widget 树中第二个Widget和之前Widget,以此类推,直到Widget树比较完成。

Flutter遵循一个最基本的原则:判断新的Widget和老的Widget是否是同一个类型:

1)如果不是同一个类型,那就把Widget、Element、RenderObject分别从它们的树(包括它们的子 树)上移除,然后创建新的对象;

2)如果是一个类型,那就仅仅修改RenderObject中的配置,然后继续向下遍历;

在我们的例子中,ThreeTree Widget是和原来一样的类型,它的配置也是和原来的ThreeTreeRender一 样的,所以什么都不会发生。下一个节点在Widget树中是Container Widget,它的类型和原来是一样 的,但是它的颜色变化了,所以RenderObject的配置也会发生对应的变化,然后它会重新渲染,其他的 对象都保持不变。

上面这个过程是非常快的,因为Widget的不变性和轻量级使得他能快速的创建,这个过程中那些重量级 的RenderObject则是保持不变的,直到与其相对应类型的Widget从Widget树中被移除。 注意这三个树,配置发生改变之后,Element和RenderObject实例没有发生变化。

当Widget的类型发生改变时:

和刚才流程一样,Flutter会从新Widget树的顶端向下遍历,与原有树中的Widget类型进行对比。

因为FlatButton的类型与Element树中相对应位置的Element的类型不同,Flutter将会从各自的树上删除 这个Element和相对应的ContainerRender,然后Flutter将会重建与FlatButton相对应的Element和 RenderObject。如下:

很明显这个重新创建的过程相对耗时的,但是当新的RenderObject树被重建后将会计算布局,然后绘制 在屏幕上面。Flutter内部使用了很多优化方法和缓存策略来处理,所以你不需要手动来处理这些。以上便是Flutter的整体渲染机制,可以看出Flutter利用了三棵树很巧妙的解决的性能的问题。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/161156.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【RabbitMQ】RabbitMQ 消息的堆积问题 —— 使用惰性队列解决消息的堆积问题

文章目录 一、消息的堆积问题1.1 什么是消息的堆积问题1.2 消息堆积的解决思路 二、惰性队列解决消息堆积问题2.1 惰性队列和普通队列的区别2.2 惰性队列的声明方式2.3 演示惰性队列接收大量消息2.4 惰性队列的优缺点 一、消息的堆积问题 1.1 什么是消息的堆积问题 消息的堆积…

同城售后系统退款业务重构心得 | 京东云技术团队

一、重构背景 1.1、退款 到家、小时购、天选退款有2套结构,代码逻辑混乱; 其中小时购、天选部分售后单是和平生pop交互退款,部分是和售后中台交互退款;并且兼容3套逻辑; 痛点:代码繁重,缺乏…

CCLINK IEFB总线转ETHERNET/IP网络的协议网关使欧姆龙和三菱的数据互通的简单配置方法

想要实现CCLINK IEFB总线和ETHERNET/IP网络的数据互通。 捷米JM-EIP-CCLKIE是一款ETHERNET/IP从站功能的通讯网关,该产品主要功能是实现CCLINK IEFB总线和ETHERNET/IP网络的数据互通。本网关连接到ETHERNET/IP总线和CCLINK IEFB总线上都可以做为从站使用。网关分别…

创建基于多任务的并发服务器

有几个请求服务的客户端&#xff0c;我们就创建几个子进程。 这个过程有以下三个阶段&#xff1a; 这里父进程传递的套接字文件描述符&#xff0c;实际上不需要传递&#xff0c;因为子进程会复制父进程拥有的所有资源。 #include <stdio.h> #include <stdlib.h>…

Android---App 的安装过程

Android 系统中两个比较重要的服务 ActivityManagerService(AMS) 和 WindowManagerService(WMS)&#xff0c;这篇文章中通过分析 apk 的安装过程&#xff0c;来了解 Android 中另一个比较重要的系统服务 -- PackageManagerService(PMS)。 编译阶段 在分析安装过程之前&#x…

ElasticSearch集群架构实战及其原理剖析

ES集群架构 为什么要使用ES集群架构 分布式系统的可用性与扩展性&#xff1a; 高可用性 服务可用性&#xff1a;允许有节点停止服务&#xff1b;数据可用性&#xff1a;部分节点丢失&#xff0c;不会丢失数据&#xff1b; 可扩展性 请求量提升/数据的不断增长(将数据分布…

上线项目问题——无法加载响应数据

目录 无法加载响应数据解决 无法加载响应数据 上线项目时 改用服务器上的redis和MySQL 出现请求能请求到后端&#xff0c;后端也能正常返回数据&#xff0c;但是在前端页面会显示 以为是跨域问题&#xff0c;但是环境还在本地&#xff0c;排除跨域问题以为是服务器问题&#…

一款简单而强大的文档翻译网站

一款文字/文件翻译的网站,支持多个领域的翻译&#xff0c;支持常见的语言翻译(韩/日/法/英/俄/德…),最大百分比的保持原文排版(及个别除外基本100%还原)。 新用户注册就有100页的免费额度&#xff0c;每月系统还会随机赠送翻译额度&#xff0c;说实话这比好多的企业要好的多了…

设计模式_策略模式

策略模式 介绍 设计模式定义案例问题堆积在哪里解决办法策略模式对算法进现封装&#xff0c;抽象 如&#xff1a;IF elseIF 一大堆 可以配合工厂模式使用炼丹炉里做饭 要求 菜谱 和 食材可配置问题在可配置 菜谱封装菜谱 然后抽象菜谱&#xff0c;为了统一使用方法 类图 Cai…

3D RPG Course | Core 学习日记三:Navigation智能导航地图烘焙

前言 前面我们已经绘制好了一个简单的地图场景&#xff0c;现在我们需要使用Navigation给地图做智能导航&#xff0c;以实现AI自动寻路&#xff0c;以及设置地图的可行走区域以及不可行走区域&#xff0c;Navigation的基础知识、原理、用法在Unity的官方文档&#xff0c;以及网…

【算法专题】双指针—和为s的两个数

一、题目解析 只需在这个数组中找出两个数相加等于target即可 二、算法原理 1、暴力解法&#xff08;时间复杂度&#xff1a;O(n^2)&#xff09; 两个for循环嵌套遍历这个数组即可&#xff0c;不过会超时 class Solution { public:vector<int> twoSum(vector<int&…

multiple kernel learning(MKL)多核学习

历史上之所以会出现多核学习&#xff08;MKL&#xff09;这个词&#xff0c;是因为在深度学习流行起来以前&#xff0c;kernel是处理非线性的默认方法&#xff0c;那个年代优化一个非线性函数不容易&#xff0c;每加一层复杂性可能就需要多设计一个优化算法&#xff0c;MKL就是…