arxiv:https://arxiv.org/abs/2303.14488
github:https://github.com/Cuogeihong/CEASC
为了进一步减轻SC中的信息损失,使训练过程更加稳定,我们在训练过程中除了稀疏卷积之外,还保持了正常的密集卷积,生成了在全输入特征图上卷积的特征图。然后,我们使用来通过将MSE损失优化为来增强稀疏特征图
arxiv:https://arxiv.org/abs/2303.14488
github:https://github.com/Cuogeihong/CEASC
为了进一步减轻SC中的信息损失,使训练过程更加稳定,我们在训练过程中除了稀疏卷积之外,还保持了正常的密集卷积,生成了在全输入特征图上卷积的特征图。然后,我们使用来通过将MSE损失优化为来增强稀疏特征图
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/161720.html
如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!