数据可视化:地图

1.基础地图的使用

如何添加颜色表示层级

 代码实现

"""基础地图的使用
"""
from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts# 准备地图对象
map = Map()
# 准备数据
data = [("北京市", 9),("上海市", 59),("甘肃省", 812),("黑龙江省", 313),("四川省", 1999),("台湾省", 19999)
]
# 添加数据
map.add("测试地图", data, "china")# 设置全局选项
map.set_global_opts(visualmap_opts=VisualMapOpts(is_show=True,is_piecewise=True,pieces=[{"min": 1, "max": 9, "label": "1-9", "color": "#38f55c"},{"min": 10, "max": 99, "label": "10-99", "color": "#f5ad38"},{"min": 100, "max": 499, "label": "100-500", "color": "#f54a38"},{"min": 500, "max": 998, "label": "500-998", "color": "#9d38f5"},{"min": 999, "label": ">999", "color": "#201641"}])
)# 绘图
map.render()

2.疫情地图——国内疫情地图

代码实现

"""演示全国疫情可视化地图开发
"""
import json
from pyecharts.charts import Map
from pyecharts.options import *# 读取数据文件
f = open("D:\\IOText\\DataDoing\\疫情.txt", "r", encoding="UTF-8")
china_data_json = f.read()
# 关闭文件
f.close()
# 取到各省数据
china_data_dict = json.loads(china_data_json)
province_data_list = china_data_dict["areaTree"][0]["children"]
# 地图最终所需的数据
map_list = list()
# 组装每一省份和确诊人数为元组,并各个省的数据都封装入列表内
for province_data in province_data_list:# 省份名称province_name = province_data["name"]# 确诊人数province_confirm = province_data["total"]["confirm"]map_list.append((province_name, province_confirm))
print(map_list)
# 创建地图对象
map = Map()# 添加数据
map.add("全国身份确诊人数", map_list, "china")# 设置全局配置,指定分段的视觉映射
map.set_global_opts(title_opts=TitleOpts(title="全国疫情地图"),visualmap_opts=VisualMapOpts(is_show=True,is_piecewise=True,pieces=[{"min": 1, "max": 99, "label": "1-99", "color": "#CCFFFF"},{"min": 100, "max": 999, "label": "100-999", "color": "#FFFF99"},{"min": 1000, "max": 4999, "label": "1000-4999", "color": "#FF9966"},{"min": 5000, "max": 9999, "label": "5000-9999", "color": "#FF6666"},{"min": 10000, "max": 99999, "label": "10000-99999", "color": "#CC3333"},{"min": 100000, "label": ">100000", "color": "#990033"}])
)# 绘图
map.render("全国疫情地图.html")

相关数据文件在文章开头出获取


3.疫情地图——省级疫情地图

但是我直接演示四川的地图

代码示例

"""省级疫情地图
"""
import json
from pyecharts.charts import Map
from pyecharts.options import *# 读取数据文件
f = open("D:\\IOText\\DataDoing\\疫情.txt", "r", encoding="UTF-8")
sichuan_data_json = f.read()
# 关闭文件
f.close()
# 取到各省数据
sichuan_data_dict = json.loads(sichuan_data_json)
sichuan_children_data_list = sichuan_data_dict["areaTree"][0]["children"][12]["children"]
# 地图最终所需的数据
map_list = list()
# 组装每一省份和确诊人数为元组,并各个省的数据都封装入列表内
for province_data in sichuan_children_data_list:# 省份名称if province_data["name"] == "阿坝":province_name = province_data["name"] + "藏族羌族自治州"elif province_data["name"] == "甘孜":province_name = province_data["name"] + "藏族自治州"elif province_data["name"] == "凉山":province_name = province_data["name"] + "彝族自治州"else:province_name = province_data["name"] + "市"# 确诊人数province_confirm = province_data["total"]["confirm"]map_list.append((province_name, province_confirm))
print(map_list)
# 创建地图对象
map = Map()# 添加数据
map.add("全国身份确诊人数", map_list, "四川")# 设置全局配置,指定分段的视觉映射
map.set_global_opts(title_opts=TitleOpts(title="四川省疫情地图"),visualmap_opts=VisualMapOpts(is_show=True,is_piecewise=True,pieces=[{"min": 1, "max": 9, "label": "1-9", "color": "#57fa66"},{"min": 10, "max": 99, "label": "10-99", "color": "#faf857"},{"min": 100, "max": 499, "label": "100-499", "color": "#FF9966"},{"min": 500, "max": 999, "label": "500-999", "color": "#FF6666"},{"min": 1000, "max": 9999, "label": "1000-9999", "color": "#CC3333"},{"min": 10000, "label": ">9999", "color": "#990033"}])
)# 绘图
map.render("四川疫情地图.html")

结果示例

结语

简简单单直接拿下啦!!!

再见ヾ( ̄▽ ̄)Bye~Bye~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/161977.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

墨者学院 内部文件上传系统漏洞分析溯源

打开web页面&#xff1a; 是个文件上传&#xff0c;先随便上传一个 txt 文件并抓包&#xff1a; 木马文件&#xff1a; <%eval request ("123")%>发现是个 IIS&#xff0c;并且给了文件的上传路径 upload&#xff0c;那就尝试上传 asp 一句话&#xff0c;直接…

Android Studio(对话框AlertDialog)

前言 前面介绍了常用控件的相关属性&#xff0c;那些控件的使用起来也很容易。在本节及后面的章节介绍的控件将是相比于前面使用起来较为复杂的&#xff08;不过使用多了&#xff0c;也很容易上手&#xff09;。 这些控件常常需要配合java代码来使用&#xff0c;比如说对话框、…

Excel文档名称批量翻译的高效方法

在处理大量文件时&#xff0c;我们常常需要借助一些工具来提高工作效率。例如&#xff0c;在需要对Excel文档名称进行批量翻译时&#xff0c;一个方便快捷的工具可以帮助我们省去很多麻烦。今天&#xff0c;我将介绍一款名为固乔文件管家的软件&#xff0c;它能够帮助我们轻松实…

pandas DataFrame转成字典

目录 dict形式list形式records形式split形式 dict形式 原数据 DateFrame.to_dict() pd.read_excel(r"D:\Users\admin\Desktop\授信额度使用.xlsx").to_dict()list形式 DateFrame.to_dict(‘list’) pd.read_excel(r"D:\Users\admin\Desktop\授信额度使用.x…

MySQL复习总结(二):进阶篇(索引)

文章目录 一、存储引擎1.1 MySQL体系结构1.2 存储引擎介绍1.3 存储引擎特点1.4 存储引擎选择 二、索引2.1 基本介绍2.2 索引结构2.3 索引分类2.4 索引语法2.5 SQL性能分析2.6 索引使用2.6.1 最左前缀法则2.6.2 范围查询2.6.3 索引失效情况2.6.4 SQL提示2.6.5 覆盖索引2.6.6 前缀…

Zookeeper3.7.1分布式安装部署

上传安装文件到linux系统上面 解压安装文件到安装目录 [zhangflink9wmwtivvjuibcd2e package]$ tar -zxvf apache-zookeeper-3.7.1-bin.tar.gz -C /opt/software/3. 修改解压文件名 [zhangflink9wmwtivvjuibcd2e software]$ mv apache-zookeeper-3.7.1-bin/ zookeeper-3.7…

项目部署文档

申请SSL证书 先申请,用免费的 下载证书 先将下载下来的保存起来 服务器安装JDK: 创建develop目录 mkdir /usr/local/develop/ 把JDK压缩包上传到/usr/local/develop/目录 解压安装包 并且将安装到指定目录 tar -zxvf /usr/local/develop/jdk-8u191-linux-x64.tar.gz -C /us…

4.1 构建onnx结构模型-Reshape

前言 构建onnx方式通常有两种&#xff1a; 1、通过代码转换成onnx结构&#xff0c;比如pytorch —> onnx 2、通过onnx 自定义结点&#xff0c;图&#xff0c;生成onnx结构 本文主要是简单学习和使用两种不同onnx结构&#xff0c; 下面以reshape 结点进行分析 方式 方法一…

JVM虚拟机:JVM的垃圾回收清除算法(GC)有哪些

垃圾回收清除算法 引用计数法 标记清除 拷贝算法 标记压缩 引用计数法 有一个引用指向对象,那么引用计数就加1,少一个引用指向,那么引用计数就减1,这种方法了解一下就好,JVM机会不会使用这种方法,因为它在每次对象赋值的时候都要维护引用计数器,且计数器本身也有一定的…

苹果加大对印度的扶持,提高在其生产iphone的比重

KlipC报道&#xff1a;跟踪苹果产业链&#xff0c;有分析师预计2023年全球约12%-14%的iphone在印度生产&#xff0c;预计2024年&#xff0c;印度将生产20%-25%的iphone。 KlipC的合伙人Andi D表示&#xff1a;“近年来随着苹果对中国的以来&#xff0c;印度已经成为高科技制造和…

使用Nokogiri库的Python程序

python import requests from bs4 import BeautifulSoup import os # 设置 proxies {"http": "", "https": ""} # 设置headers headers { User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (K…

Pycharm-community-2021版安装和配置

一、下载Pycharm-community-2021 1.从官网下载pycharm-community Pycharm 版本官网 二、安装PyCharm 1.打开下载完成的安装包&#xff0c;点击Next 2.安装PyCharm到其他位置,点击Next 3.一定把更新PATH变量勾上,可以创建桌面快捷方式&#xff0c;创建关联&#xff0c;最后…