【电路笔记】-谐波

谐波

文章目录

  • 谐波
    • 1、概述
    • 2、频谱分析
    • 3、已知信号
    • 4、未知信号
    • 5、总结

周期性信号并不总是完美的正弦模式,例如我们之前有关 正弦波的文章之一中介绍的那样。 有时,信号确实可以是简单正弦波的叠加,它们被称为复杂波形。

在本文中,我们将重点关注复杂的周期性波形,以了解它们的组成以及如何分析它们。

首先,我们介绍谐波的概念以及频谱表示。 在第二部分中,我们重点关注谱分析,这是基于傅立叶级数的分析谐波的数学工具。

1、概述

假设一个周期信号 s ( t ) s(t) s(t),它是两个称为谐波 y 0 ( t ) y_0(t) y0(t) y 1 ( t ) y_1(t) y1(t) 的正弦波形的叠加,它们的频率和幅度满足 ω 1 = 2 ω 0 \omega_1=2\omega_0 ω1=2ω0 A 0 = 2 A 1 A_0=2A_1 A0=2A1。 因此,它们的表达式由 y 0 ( t ) = A 0 sin ⁡ ( ω 0 t ) y_0(t)=A_0\sin(\omega_0t) y0(t)=A0sin(ω0t) y 1 ( t ) = A 1 sin ⁡ ( ω 1 t ) y_1(t)=A_1\sin(\omega_1t) y1(t)=A1sin(ω1t) 给出。 图 1 显示了与结果信号 s ( t ) s(t) s(t) 分开的谐波 y 0 ( t ) y_0(t) y0(t) y 1 ( t ) y_1(t) y1(t)

在这里插入图片描述

图1:复杂波形及其谐波的表示

在此示例中, y 0 ( t ) y_0(t) y0(t) 称为基波, y 1 ( t ) y_1(t) y1(t) 称为一次谐波。 基波谐波是频率较低的信号,它给出了结果信号 s ( t ) s(t) s(t) 的周期性:我们确实可以看到 ω 0 = ω S ω_0=ω_S ω0=ωS

因此,谐波是复杂波形的“构建”函数,但是,它们的频率不是随机的,并且始终满足 ω 0 = ω S ω_0=ω_S ω0=ωS ω 1 = 2 ω 0 ω_1=2ω_0 ω1=2ω0 ω 2 = 3 ω 0 ω_2=3ω_0 ω2=3ω0(如果存在二次谐波)等等……在一般情况下, 第n次谐波的频率满足关系式 ω n = ( n + 1 ) × ω 0 ω_n=(n+1)\times ω_0 ωn=(n+1)×ω0

当给定特定的复杂波形时,一种非常合适的表示形式称为信号的频谱。 这种表示方法包括绘制每个谐波的幅度作为频率的函数,并且可以通过 Python 或 MatLab 等数值程序进行计算:

在这里插入图片描述

图2:s(t)的频谱

检查 s ( t ) s(t) s(t) 的频谱,可以清楚地看到基波信号的频率为 f 0 = 15 / 2 π = 2.4 H z f_0=15/2\pi=2.4Hz f0=15/2π=2.4Hz,幅度 A 0 = 1 A_0=1 A0=1(例如 V V V A A A),而一次谐波的频率为 2 f 0 = 4.8 H z 2f_0=4.8Hz 2f0=4.8Hz,振幅 A 1 = 0.5 A_1=0.5 A1=0.5

2、频谱分析

绘制如图 2 所示的频谱是基于称为傅立叶级数的数学工具。 这种方法是在19世纪初期由法国科学家约瑟夫·傅立叶提出的,至今仍然是信号分析的主要工具之一。

该方法基于这样的观察:任何周期信号 y ( t ) y(t) y(t) 实际上都是可以计算幅度和相位的谐波的无限和(一系列)。 同样的观察可以写成一个数学方程:

在这里插入图片描述

等式1:将周期信号分解为傅立叶级数

复指数项只是写谐波的复数形式(请参阅复数这篇文章)。 整数n指的是第n次谐波,T是 y ( t ) y(t) y(t)的周期。

系数 c n ( y ) c_n(y) cn(y) 称为函数 y ( t ) y(t) y(t)的傅里叶系数,由以下关系确定:

在这里插入图片描述

等式2:傅里叶系数

通常将系数 c n c_n cn 分为两个系数 a n a_n an b n b_n bn,对于实函数,这两个系数由下式给出:

在这里插入图片描述

等式3:实函数的简化傅立叶系数

这种确定任何周期信号的傅里叶分解的方法,因此给出如图 2 所示的频谱,也称为傅里叶变换 (FT),它是针对非周期信号的相同方法的扩展。

需要分别考虑两种情况才能进行周期信号的 FT,并在以下小节中进行解释。

3、已知信号

第一种情况是要分解的信号是否具有已知的解析表达式。 例如,考虑周期性为 T 的方波信号 s q ( t ) sq(t) sq(t)。其表达式通过以下定义可知:

在这里插入图片描述

图 3 表示几个周期内周期 T = 2 π T=2\pi T=2π 的方波信号:

在这里插入图片描述

图3:方波信号示意图

首先,我们确定项 a 0 a_0 a0 的表达式:

在这里插入图片描述
该系数表示信号的平均值: y ( t ) y(t) y(t),并且在一半的时间内确实等于 1,否则等于 0。 请注意,由于 sin ⁡ ( 0 ) = 0 \sin(0)=0 sin(0)=0,因此项 b 0 b_0 b0 等于 0。

当开发 n > 0 n>0 n>0 a n a_n an 表达式时,我们意识到这些系数与在 0 和 π \pi π 之间计算的 sin ⁡ ( n x ) \sin(nx) sin(nx) 成正比,它始终等于 0,因此 ( a n ) n > 0 = 0 (a_n)_{n>0}=0 (an)n>0=0

最后,我们确定 n > 0 n>0 n>0 时系数 b n b_n bn 的一般表达式:

在这里插入图片描述
当在 0 和 π \pi π 之间求值时,如果 n 为奇数,则 cos ⁡ ( n x ) \cos(nx) cos(nx) 项等于 -2;如果 n 为偶数,则 cos ⁡ ( n x ) \cos(nx) cos(nx)等于 0。 ( b n ) n > 0 (b_n)_{n>0} (bn)n>0 的最终表达式由下式给出:

在这里插入图片描述
每个系数 b n b_n bn 对应于谐波 sin ⁡ ( n t ) \sin(nt) sin(nt) 的幅度。 因此,根据 a 0 a_0 a0 b n b_n bn 的表达式,我们可以给出方波信号 s q ( t ) sq(t) sq(t) 的完整傅里叶展开:

在这里插入图片描述

等式:周期2π方波信号的傅立叶展开

根据等式4,我们可以绘制 s q ( t ) sq(t) sq(t) 的频谱的一部分,如下图 4 所示:

在这里插入图片描述

图4:方波信号的频谱 sq(t)

对于该信号,仅存在奇次谐波,其幅度由 2 / n π 2/n\pi 2/ 给出,频率由 n / 2 π n/2\pi n/2π 给出。 请注意,平均值也出现在 0Hz 频率的频谱中。 由于方波信号呈现无限数量的谐波,因此频谱当然仅显示到特定频率。

例如,当使用函数发生器生成方波信号时,仅采用有限数量的谐波来构建波形。 例如,如果我们使用谐波 1、2、3、4 和 5,我们称信号是使用直到五阶的谐波生成的,阶数给出了形状的准确度:

在这里插入图片描述

图5:使用谐波分解对方波信号进行两种近似图

当近似阶数增加时,我们可以查明在不连续性跳跃周围出现过冲(信号从 0 到 1 或从 1 到 0 残酷地交替)。 这被称为吉布斯现象(Gibbs Phenomenon),并且出现在存在不连续跳跃的每个信号中。

4、未知信号

让我们重新考虑演示部分中给出的示例,并解释数值程序如何确定 s ( t ) s(t) s(t)的傅立叶分解。 在图 1 中,我们可以测量 s ( t ) s(t) s(t) 的周期性为 T = 0.42 s T=0.42s T=0.42s

第一个系数 c 0 ( y ) c_0(y) c0(y)很容易确定,在我们的示例中等于 0,因为围绕水平轴对称的周期信号在一个周期内的积分始终等于 0。实际上,该第一个系数始终与 直流量,因此是平均值,这在我们的例子中不存在。

当函数 s ( t ) s(t) s(t)的表达式已知时,可以分析计算系数 c n c_n cn,如上一小节所示。 然而,对于未知函数 s ( t ) , n > 0 s(t),n>0 s(t)n>0时的系数 a n ( y ) an(y) an(y) b n ( y ) bn(y) bn(y) 通过计算 − T / 2 -T/2 T/2 T / 2 T/2 T/2(或 0 和 T T T)之间的面积来数值确定 函数 s ( t ) cos ⁡ ( 2 π n t / T ) s(t)\cos(2\pi nt/T) s(t)cos(2πnt/T) s ( t ) sin ⁡ ( 2 π n t / T ) s(t)\sin(2\pi nt/T) s(t)sin(2πnt/T)的曲线。

这可以通过多种方法来完成,最容易实现和理解的方法之一是矩形方法,其思想如图 6 中的函数 s ( t ) sin ⁡ ( 2 π t / T ) s(t)\sin(2\pi t/T) s(t)sin(2πt/T)所示:

在这里插入图片描述

图6:矩形法图解

如图 5 所示,该方法包括通过对宽度为 d t dt dt 和高度为 y ( n × d t ) y(n\times dt) y(n×dt)的小矩形面积求和来近似曲线的积分,其中 n n n是所考虑矩形的索引。

信号 y ( t ) y(t) y(t)的周期T被细分为 N N N个矩形,例如 N × d t = T N\times dt=T N×dt=T。 当 d t dt dt 足够小时,矩形面积之和约等于 y ( t ) y(t) y(t)在一段时间内的积分:

在这里插入图片描述

值得一提的是,为了更好地收敛到精确结果,存在更精确的方法,例如通过选择矩形以外的其他形状来更准确地遵循曲线。

5、总结

  • 如本文第一部分所述,谐波是形成任何周期信号的基本正弦波形。 一些复杂波形可以具有有限数量的谐波,而其他波形则具有无限数量,例如本文后面介绍的方波信号。
  • 谐波的频率始终是复信号基频的整数倍。 它们的幅度通常向高频方向减小,并且可以通过傅里叶分解来确定。
  • 频谱表示是突出显示信号谐波的最方便的方法,它是通过第二部分中介绍的傅里叶分解来计算的。 如果复杂波形的表达式已知,则分解可以是解析的;如果信号未知,则分解可以是数值的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/162214.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HR的油猴脚本:前程无忧简历关键词统计

介绍 近年来,求职市场变得愈加竞争激烈,雇主和招聘人员需要花费大量的时间来筛选简历,以找到合适的候选人。这个Tampermonkey脚本“HR帮手”为前程无忧(51job)的HR提供了一种强大的工具,帮助他们快速筛选简…

60V、低 IQ、双通道LTC3892MPUH-2、LTC3892HUH-2、LTC3892IUH-2、LTC3892IUH两相同步降压型 DC/DC 控制器

概述: LTC3892 / LTC3892-2 是一款高性能、双通道降压型 DC/DC 开关稳压控制器,用于驱动全 N 沟道同步功率 MOSFET 级。通过使两个控制器输出级异相运作,可较大限度地降低功率损耗和噪声。 栅极驱动电压可设置在 5V 至 10V 的范围内&…

22款奔驰GLE450加装原厂360全景影像 打破死角

360全景影像影像系统提升行车时的便利,不管是新手或是老司机都将是一个不错的配置,无论是在倒车,挪车以及拐弯转角的时候都能及时关注车辆所处的环境状况,避免盲区事故发生,提升行车出入安全性。 360全景影像包含&…

ActiveMq学习⑨__基于zookeeper和LevelDB搭建ActiveMQ集群

引入消息中间件后如何保证其高可用? 基于zookeeper和LevelDB搭建ActiveMQ集群。集群仅提供主备方式的高可用集群功能,避免单点故障。 http://activemq.apache.org/masterslave LevelDB,5.6版本之后推出了LecelDB的持久化引擎,它使…

mysql迁移data目录(Linux-Centos)

随着时间的推移,mysql的数据量越越大,使用yum默认安装的目录为系统盘 /var/lib/mysql,现重新挂载了一个硬盘,需要做数据目录的迁移到 /mnt/data/。以解决占用系统盘过高情况。 1.强烈建议这种操作。镜像一个一样的Centos系统&…

【文生图】Stable Diffusion XL 1.0模型Full Fine-tuning指南(U-Net全参微调)

文章目录 前言重要教程链接以海报生成微调为例总体流程数据获取POSTER-TEXTAutoPosterCGL-DatasetPKU PosterLayoutPosterT80KMovie & TV Series & Anime Posters 数据清洗与标注模型训练模型评估生成图片样例宠物包商品海报护肤精华商品海报 一些TipsMata:…

以太网知识

/ 【读书笔记】C3 The Ethernet System 以太网知识01 Media Independent Interface (MII) 媒体独立接口 CHAPTER 2 IEEE Ethernet Standards 以太网标准- 以太网的历史背景 基础知识——以太网(Ethernet ) 以太网数据帧格式(结…

selenium元素定位 —— 提高篇 xpath定位元素

XPath 最初是用来在 XML 文档中定位 DOM 节点的语言,由于 HTML 也可以算作 XML 的一种实现,所以 Selenium 也可以利用 XPath 这一强大的语言来定位 Web 元素。xpath的强大在于它可以通过父节点或者兄弟节点,根据html元素的前后关联性定位到元…

Flink源码解析八之任务调度和负载均衡

源码概览 jobmanager scheduler:这部分与 Flink 的任务调度有关。 CoLocationConstraint:这是一个约束类,用于确保某些算子的不同子任务在同一个 TaskManager 上运行。这通常用于状态共享或算子链的情况。CoLocationGroup & CoLocationGroupImpl:这些与 CoLocationCon…

飞桨平台搭建PP-YOLOE模型

一、创建项目 此博客仅是运行PP-YOLOE源码,这里以变压器渗漏数据集为例COCO数据集太大了,跑不动,V100训练预估计得7天左右,即便是A100也得4天半,变压器渗漏油数据集跑一个小时左右,还可以接受,…

网络安全应急响应工具(系统痕迹采集)-FireKylin

文章目录 网络安全应急响应工具(系统痕迹采集)-FireKylin1.FireKylin介绍【v1.4.0】 2021-12-20【v1.0.1】 2021-08-09 2.客户端界面Agent支持的操作系统FireKylinAgent界面使用方式比较传统方式与FireKylin比较无法可达目标的场景应用对比 3.使用教程设置语言Agent配置&#x…

一文1800字解读性能指标与性能分析

性能测试监控关键指标: 1、系统指标:与⽤户场景与需求直接相关的指标 2、服务器资源指标:硬件服务器的资源使⽤情况的指标 3、JAVA应⽤ : JAVA应⽤程序在运⾏时的各项指标 4、数据库:数据库服务器运⾏时需要监控的指标 5、压测机资源指标:测试机在模拟⽤户负载时的资源使⽤…