有限域的Fast Multiplication和Modular Reduction算法实现

1. 引言

关于有限域的基础知识,可参考:

  • RISC Zero团队2022年11月视频 Intro to Finite Fields: RISC Zero Study Club
    在这里插入图片描述

有限域几乎是密码学中所有数学的基础。
ZKP证明系统中的所有运算都是基于有限域的:

  • 使用布尔运算的数字电路:如AND、OR、NOT。
  • 使用有限域运算的算术电路:如addition、multiplication、negation。

但是,真实的计算机没有有限域电路装置,只有:

  • ADD rax, rbx
  • MUL rax
  • SHR rax, CL
  • 等等

因此,需基于以上运算来构建有限域运算。
有限域运算的速度很关键,原因在于:

  • 影响ZKP可用性的最大障碍在于证明开销。
  • 几乎所有的证明时间都用于有限域运算了。为提升ZKP证明速度:
    • 减少有限域运算次数(如,更高效的NTT或MSM算法)
    • 让有限域运算更高效(如,使用优化的有限域表示)

本文主要关注内容有:

  • BigInts
  • BigInts经典加法运算
  • BigInts经典乘法运算
  • Modular reduction(Barrett算法):当无法更改数字表示时,最有用。
  • Montgomery form
  • Multiplication and reduction(Montgomery算法):最常用算法。
  • 其它multiplication算法

并对大整数乘法运算的经典算法、Barrett算法、Montgomery算法进行了对比:
在这里插入图片描述

2. 大整数及其加法和乘法运算

大整数,又名BigInt或Multiprecision Integers。
真实计算机的运算符是基于word的:

  • 几乎所有的现代计算机都使用64-bit words
  • 但32-bit words并未完全过时。比如在IoT世界。

对于更大(如256位)的域,会将其切分为words来表示:

  • 如,通常以4个64-bit word来表示256-bit数字。
  • 如十进制的8位数字,可 以4个2-digit word来表示。

如以100进制的digit来表示大整数27311837,对应为:
( 27 31 18 37 ) 100 (27\ 31\ 18\ 37)_{100} (27 31 18 37)100

2.1 大整数经典加法运算

对应的大整数加法运算,如 ( 27 31 18 37 ) 100 + ( 88 68 97 89 ) 100 (27\ 31\ 18\ 37)_{100} + (88\ 68\ 97\ 89)_{100} (27 31 18 37)100+(88 68 97 89)100,计算规则为:
在这里插入图片描述
具体见Handbook of Elliptic and Hyperelliptic Curve Cryptography书本中的Algorithm 10.3算法:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.2 大整数经典乘法运算

( 54 12 ) 100 ∗ ( 36 29 ) 100 (54\ 12)_{100}*(36\ 29)_{100} (54 12)100(36 29)100大整数乘法运算为例,具体见Handbook of Elliptic and Hyperelliptic Curve Cryptography书本中的Algorithm 10.8算法:
在这里插入图片描述
对应各个step的计算数据为:
在这里插入图片描述

3. Modular Reduction

需注意,以上加法和乘法运算结果均为更大的值,需将这些大的结果值reduce为相应的canonical表示,如:
在这里插入图片描述
常见的Modular Reduction算法有:

  • 1)Barret reduction算法:当无法更改数字表示时,最有用。
  • 2)Montgomery multiplication and reduction算法:最常用算法。

相关博客有:

  • 基础算法优化——Fast Modular Multiplication
  • GPU/CPU友好的模乘算法:Multi-Precision Fast Modular Multiplication
  • Montgomery reduction——多精度模乘法运算算法

3.1 Barret reduction算法

做reduction最明显的方式是做除法,但除法运算昂贵,且可能不是constant time的。以single-word除法运算 b = 1 , R = 2 k b=1,R=2^k b=1R=2k 为例:

func reduce(a uint) uint {q:= a / n  // Division implicitly returns the floor of the result.return a - q * n
}

非constant time会存在timing attack攻击问题。
Barrett reduction为将 1 / n 1/n 1/n近似为 m / 2 k m/2^k m/2k,因为 m / 2 k m/2^k m/2k中的除法实际是右移运算,要便宜得多。【可近似计算 m m m值为 m = ⌊ 2 k / n ⌋ m=\left \lfloor 2^k/n\right \rfloor m=2k/n

func reduce(a uint) uint {q := (a * m) >> k // ">> k" denotes bitshift by k.return a - q * n
}

不过这样reduce之后的结果在 [ 0 , 2 n ) [0,2n) [0,2n),而不是 [ 0 , n ) [0,n) [0,n),因此需进一步reduce:

func reduce(a uint) uint {q := (a * m) >> ka -= q * nif a >= n {a -= n}return a
}

Handbook of Elliptic and Hyperelliptic Curve Cryptography书本中的Algorithm 10.17算法,将其扩展为了multi-word Barrett Reduction算法,且在以上最后一步reduce之前的结果不再是 [ 0 , 2 n ) [0,2n) [0,2n)而是可能更大的范围值,因此在Algorithm 10.17算法中第4步采用的是while
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.2 Montgomery multiplication and reduction算法

Montgomery Form为另一种有限域表示,其支持快速combined multiplication and reduction算法。

之前将有限域元素表示为:
x ∈ [ 0 , N − 1 ] x\in [0,N-1] x[0,N1]

而Montgomery Form表示定义为:
[ x ] = ( x R ) m o d N [x]=(xR)\mod N [x]=(xR)modN

Montgomery Reduction算法计算的是:
R E D C ( u ) = ( u R − 1 ) m o d N REDC(u)=(uR^{-1})\mod N REDC(u)=(uR1)modN
而不是之前Barrett Reduction计算的 u m o d N u\mod N umodN

R E D C REDC REDC是一个非常多功能的公式:

  • 1)将经典转换为Montgomery: [ x ] = R E D C ( ( x R 2 ) m o d N ) [x]=REDC((xR^2)\mod N) [x]=REDC((xR2)modN)
  • 2)将Montgomery转换为经典: R E D C ( [ x ] ) = x REDC([x])=x REDC([x])=x
  • 3)对Montgomery Form表示的乘法运算: ( ( x R m o d p ) ∗ ( y R m o d p ) ∗ R − 1 m o d p ) = ( x y R ) m o d p ((xR\mod p)*(yR\mod p)*R^{-1}\mod p)=(xyR)\mod p ((xRmodp)(yRmodp)R1modp)=(xyR)modp,对应在Handbook of Elliptic and Hyperelliptic Curve Cryptography书本中的Algorithm 11.3算法中做了相应实现:
    在这里插入图片描述

其中 Handbook of Elliptic and Hyperelliptic Curve Cryptography书本中的Algorithm 10.22算法中所实现的Montgomery reduction算法为:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4. 其它multiplication算法

Multiplication算法的演变过程为:

  • multiplication算法曾被认为其runtime约为 O ( n 2 ) O(n^2) O(n2)
  • Karatsuba发明了一种divide-and-conquer算法,其runtime为 O ( n 1.58 ) O(n^{1.58}) O(n1.58)
  • Toom-Cook乘法算法与Karatsuba算法类似,性能略好一点。
  • Schönhage–Strassen 发明了一种NTT算法,其runtime为 O ( n ⋅ log ⁡ n ⋅ log ⁡ log ⁡ n ) O(n\cdot \log n\cdot \log\log n) O(nlognloglogn)
  • 当对大整数做乘法运算时,其速度要更慢,如4096位RSA密钥。

参考资料

[1] RISC Zero团队2023年2月视频 Finite Field Implementations: Barrett & Montgomery【slide见Finite Field Implementations】
[2] 维基百科Barrett reduction

RISC Zero系列博客

  • RISC0:Towards a Unified Compilation Framework for Zero Knowledge
  • Risc Zero ZKVM:zk-STARKs + RISC-V
  • 2023年 ZK Hack以及ZK Summit 亮点记
  • RISC Zero zkVM 白皮书
  • Risc0:使用Continunations来证明任意EVM交易
  • Zeth:首个Type 0 zkEVM
  • RISC Zero项目简介
  • RISC Zero zkVM性能指标
  • Continuations:扩展RISC Zero zkVM支持(无限)大计算
  • A summary on the FRI low degree test前2页导读
  • Reed-Solomon Codes及其与RISC Zero zkVM的关系
  • RISC Zero zkVM架构
  • RISC-V与RISC Zero zkVM的关系

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/162504.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

接口自动化测试分层设计与实践总结01

本文以笔者当前使用的自动化测试项目为例,浅谈分层设计的思路,不涉及到具体的代码细节和某个框架的实现原理,重点关注在分层前后的使用对比,可能会以一些伪代码为例来说明举例。 接口测试三要素: 参数构造 发起请求&…

重新思考边缘负载均衡

本文介绍了Netflix在基于轮询的负载均衡的基础上,集成了包括服务器使用率在内的多因素指标,并对冷启动服务器进行了特殊处理,从而优化了负载均衡逻辑,提升了整体业务性能。原文: Rethinking Netflix’s Edge Load Balancing[1] 我…

【flutter no devices】

1.在环境变量增加 ANDROID_HOME 值为:C:\Users\Administrator\AppData\Local\Android\Sdk (Android sdk 位置) 2 环境变量的path里面增加2个值: %ANDROID_HOME%\platform-tools %ANDROID_HOME%\tools 3 打开cmd,或者在Android st…

【gpt redis】原理篇

用的黑马程序员redis课程的目录,但是不想听讲了。后续都是用gpt文档获取的。 1.课程介绍(Av766995956,P145) 2.Redis数据结构-动态字符串(Av766995956,P146) sds 1M是个界限 其实他是个由c语言实现的结构体 有这么几个参数 len alloc flag char[] len是实际长度 …

【ArcGIS模型构建器】06:ArcGIS中DOM批量分幅教程

ArcGIS中利用模型构建器实现DOM批量分幅裁剪。 文章目录 1. 加载数据2. 批量分幅1. 加载数据 批量分幅通常是基于数字正射影像来实现。 数字正射影像(DOM.tif)CASS标准图幅(shp) 2. 批量分幅 单个图幅可以通过裁剪或者按掩膜提取工具来进行,批量分幅采用模型构建器进行。…

微型导轨在医疗设备中起什么作用?

微型导轨因其高精度、小型化和轻量化的特点,被广泛应用于各种需要高精度和小型化的机器中,如数控机床、工业机器人、光学仪器、医疗设备和自动化设备等,尤其是医疗领域,其应用最为广泛。 1、手术机器人:手术机器人是医…

Excel·VBA工作表导出为图片

《Excel转图片别再截图啦!用这4个方法,高清且无损!》,excel转为图片一般方法较为简单,那么能否使用vba将excel转为图片 选中区域导出为图片 zoom设置为2,导出图片较为清晰 Sub 选中区域导出为图片()Dim …

C#学习中关于Visual Studio中ctrl+D快捷键(快速复制当前行)失效的解决办法

1、进入VisualStudio主界面点击工具——>再点击选项 2、进入选项界面后点击环境——>再点击键盘,我们可用看到右边的界面的映射方案是VisualC#2005 3、 最后点击下拉框,选择默认值,点击之后确定即可恢复ctrlD的快捷键功能 4、此时可以正…

最短路径—Dijkstra算法及 变式题(一个人的旅行)

Dijkstra(迪杰斯特拉)算法是 典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径 无向图为以下(对称) : 算法本质: 第一个最短点 (直接与0.源点连接) 第二个次短点 &#…

基于java+springboot+vue的游戏道具管理系统

项目介绍 本论文主要论述了如何使用JAVA语言开发一个游戏道具管理系统 ,本系统将严格按照软件开发流程进行各个阶段的工作,采用B/S架构,面向对象编程思想进行项目开发。在引言中,作者将论述校园出入管理系统的当前背景以及系统开…

大容量中间继电器 RXMH2 RK223 067 DC110V JOSEF约瑟

系列型号 RXMH2 RK 223 067大容量中间继电器; RXMH2 RK 223 068大容量中间继电器; RXMH2 RK 223 069大容量中间继电器; RXMH2 RK 223 070大容量中间继电器; 一、用途 RXMH2系列大容量中间继电器用于工业自动化控制及电力系统…

Verilog使用vscode

使用vscode打开.v文件 Tools setting texteditor vscode文件路径 [line number]:[file name] (可能会出错,可以去vscode确认打开的文件路径,后经调整后改为 vscode文件路径 [file name]) 安装插件 搜索Verilog 添加使用最多的 …