【电路笔记】-串联RLC电路分析

串联RLC电路分析

文章目录

  • 串联RLC电路分析
    • 1、概述
    • 2、瞬态响应
    • 3、AC响应
    • 4、RCL和CLR配置
    • 5、结论

电阻器 ®、电感器 (L) 和电容器 © 是电子器件中的三个基本无源元件。 它们的属性和行为已在交流电阻、交流电感和交流电容文章中详细介绍。

在本文中,我们将重点讨论这三个组件的串联组合(称为串联 RLC 电路)。 首先,演示部分总结了三个组成组件的交流行为,并简要介绍了 RLC 电路。

在这里插入图片描述

在第二部分中,我们讨论该电路在直流电压阶跃下的电气行为,并强调为什么这种特定响应很重要。

接下来,我们在第三部分中通过计算和绘制 RLC 电路的传递函数来重点关注 RLC 电路的交流响应。

最后,我们通过在彼此之间切换组件来提出 RLC 电路的两种替代方案,我们看到交流响应变得完全不同。

1、概述

下面的图 1 给出了 RLC 电路的表示:

在这里插入图片描述

图1:RLC串联电路示意图

该电阻器是纯电阻元件,其两端的电压和电流之间不存在相移。 其阻抗 ( Z R Z_R ZR) 在直流和交流状态下保持相同,等于 R R R(以 Ω \Omega Ω 为单位)。

电感器是纯电抗元件,相移为 +90° 或 + π / 2 +\pi/2 +π/2 rad。 其阻抗由 Z L = j ω L Z_L=j\omega L ZL=L 给出,其中 ω \omega ω 是交流情况下电压/电流的角脉动,L 是电感(以 H H H 为单位)。 在直流状态下,电感器表现为两个端子之间的短路,而在交流状态下,当阻抗随频率增加时,电感器会变成开路。

电感器通常被视为抵抗电流变化的组件。

电容器也是纯电抗元件,但其相移为-90°或 − π / 2 -\pi/2 π/2 rad。 其阻抗由 Z C = − j / C ω Z_C=-j/C\omega ZC=j/Cω 给出,其中 C C C 为电容(以 F F F 为单位),因此当频率增加时,它在直流状态下表现为开路,在交流状态下表现为短路。

电容器通常被视为抵抗电压变化的组件。

在图 1 中,这三个组件串联互连。 该电路由直流或交流电源供电,输出是电容器两端的电压。 电路的总阻抗是前面所述的独立阻抗的总和:

在这里插入图片描述

在下一节中,我们将介绍该电路对电压阶跃的响应,也称为瞬态响应

2、瞬态响应

在本节中,我们将重点关注图 1 中所示电路在应用 Heaviside 步骤 H ( t ) H(t) H(t) 时的行为:

在这里插入图片描述

图2:海维赛德(Heaviside)函数

Heaviside 步骤的特征是, t < 0 t<0 t<0 时等于 0, t > 0 t>0 t>0 时等于 V i n V_{in} Vin。 这两种状态之间的转换类似于脉冲,因为当 t = 0 t=0 t=0 时导数趋向于 + ∞ +\infin +

通过对电路进行网格分析,我们可以写出 V i n = R × I + L × d I / d t + V o u t V_{in}=R×I+L×dI/dt+V_{out} Vin=R×I+L×dI/dt+Vout。 此外,我们知道电流可以改写为 I = C × d V o u t / d t I=C×dV_{out}/dt I=C×dVout/dt,从而得到以下二阶微分方程:
在这里插入图片描述

等式1:串联RLC电路的二阶微分方程

该方程的解是永久响应(时间恒定)和瞬态响应 V o u t V_{out} Vout, t r tr tr(时间变化)之和。 永久响应很容易且明显地找到,解 V o u t = V i n V_{out}=V_{in} Vout=Vin 确实是等式1 的永久解。

瞬态响应的确定很复杂,涉及许多步骤,本文将不详细介绍。 我们承认它的表达式可以采用三种不同的形式,并且取决于称为电路品质因数的 Q = ( 1 / R ) L / C Q=(1/R)\sqrt{L/C} Q=(1/R)L/C 的值。 另一个重要参数是 ω 0 = 1 / L C \omega_0=1/\sqrt{LC} ω0=1/LC ,它是电路的基本脉动。

Q > 1 / 2 Q>1/2 Q>1/2 时,该状态被称为伪周期或欠阻尼响应,瞬态响应可以写成 V o u t , t r = A e − α t cos ⁡ ( ω t + ϕ ) V_{out,tr}=Ae^{-\alpha t}\cos(\omega t+\phi) Vout,tr=Aeαtcos(ωt+ϕ) 的形式。 常数 A A A α \alpha α ϕ \phi ϕ 可以通过考虑电路的初始条件(电容器是否充电……)来找到。 脉动 ω \omega ω被称为伪脉动并且取决于基本脉动 ω 0 \omega_0 ω0

最后, Q = 1 / 2 Q=1/2 Q=1/2 时的最后一种情况,对应于临界状态或临界阻尼响应。 在这种情况下, V o u t , t r = ( A + B t ) e − ω 0 t V_{out,tr}=(A+Bt)e^{-\omega_0t} Vout,tr=(A+Bt)eω0t

需要记住的重要一点是,这些不同的解决方案决定了电压 V o u t V_{out} Vout 如何表现,并在应用 Heaviside 步骤时趋向于其永久值 V i n V_{in} Vin

在这里插入图片描述

图3:瞬态响应不同状态的曲线

我们可以通过开始说随着时间的增加每条曲线都趋于 0 来讨论这个数字。 这是有道理的,因为我们知道 V o u t = V i n + V o u t , t r V_{out}=V_{in}+V_{out,tr} Vout=Vin+Vout,tr V o u t ( t → + ∞ ) = V i n V_{out}(t→+\infin)=V_{in} Vout(t+)=Vin,因此, V o u t , t r → 0 Vout,tr→0 Vout,tr0

然而,不同的可能瞬态响应在相同的速度和行为下不会趋于 0。 临界状态是最快趋于 0 的状态,而非周期状态最慢。 伪周期状态呈现振幅呈指数下降的振荡。

对于未知的 RLC 电路,识别瞬态响应并将其与最佳可能曲线相匹配可以为我们提供电路的重要属性,例如 ω 0 \omega_0 ω0 Q Q Q

3、AC响应

在本节中,我们考虑图 1 中所示的相同电路,现在提供交流电源。 利用复数表示中 d X / d t = j ω X dX/dt=j\omega X dX/dt=X 的性质,其中 ω \omega ω 是源的角脉动,我们可以将方程 1 重写为以下形式:

在这里插入图片描述

等式2:串联RLC电路的复二阶微分方程

然后我们可以表达 V o u t / V i n V_{out}/V_{in} Vout/Vin 的比率,它是串联 RLC 电路的传递函数 T T T

在这里插入图片描述

等式3:串联RLC电路的传递函数

知道 Q = ( 1 / R ) L / C Q=(1/R)\sqrt{L/C} Q=(1/R)L/C ω 0 = 1 / L C \omega_0=1/\sqrt{LC} ω0=1/LC 并考虑参数 x = ω / ω 0 x=\omega/\omega_0 x=ω/ω0(称为减少脉动),我们可以重新排列等式3,以写出规范形式 传递函数简化并使得表达式更加紧凑:

在这里插入图片描述

等式4:RLC电路传递函数的规范形式

绘制传递函数的范数以获得作为参数x的函数的电路增益是很有趣的。 本例中取值 R = 10 Ω R=10\Omega R=10Ω 20 Ω 20\Omega 20Ω L = 0.2 H L=0.2H L=0.2H C = 100 μ F C=100\mu F C=100μF

在这里插入图片描述

图4:串联RLC电路的增益

我们可以注意到,图 1 中的串联 RLC 电路在交流状态下充当二阶低通滤波器,因为它会降低高于 ω 0 \omega_0 ω0(通常称为电路的谐振频率)的脉动的输出信号。

二阶滤波器具有稍微放大 ω 0 \omega_0 ω0 附近频率的信号的特性,并在截止频率之后呈现 -40dB/dec 的下降,而不是像一阶滤波器那样仅 -20dB/dec。

图 4 中突出显示了 Q Q Q 值(取决于 R R R)对曲线形状的影响。 谐振频率附近的峰值确实由其带宽 △ ω = ω 0 / Q \triangle \omega =\omega_0/Q ω=ω0/Q 来表征。

在此示例中, ω 0 = 223 \omega_0=223 ω0=223 rad/s 且 Q = 4.5 Q=4.5 Q=4.5 或 2.25,这为橙色曲线提供了较窄的带宽 △ ω = 50 \triangle \omega=50 ω=50rad/s,为蓝色曲线提供了 100rad/s 的较宽带宽。 因此,我们可以注意到,品质因数决定了谐振是窄(大 Q Q Q)还是宽(小 Q Q Q)。

如上一节所述,用最佳曲线拟合未知电路的传递函数使我们能够了解电路的属性,从而确定其组成元件的值。

4、RCL和CLR配置

基本元件R、L和C的其他组合可以提供不同类型的滤波器。 我们之前已经看到,RLC 配置是二阶低通滤波器,但是如果我们在它们之间切换一些组件会怎么样?

图 5 和图 6 展示了两种新配置,分别称为 RCL 和 CLR 电路:

在这里插入图片描述

图5:RLC电路图

在这里插入图片描述

图6:CLR电路图

尽管这些电路与图 1 所示的原始 RLC 电路之间存在微小变化,但交流响应却有很大不同。

确实可以证明,这两个电路的传递函数由等式 4 和 5 给出:

在这里插入图片描述

等式5:RLC电路传递函数

在这里插入图片描述

等式6:CLR电路传递函数

这些新滤波器的性质通过绘制具有相同值的传递函数范数来揭示: R = 10 Ω R=10\Omega R=10Ω 20 Ω 20\Omega 20Ω L = 0.2 H L=0.2 H L=0.2H C = 100 μ F C=100\mu F C=100μF

在这里插入图片描述

图7:串联RLC和LCR电路的增益

电路 RCL 是二阶高通滤波器,因为它衰减 ω 0 \omega_0 ω0 以下的频率。 电路 CLR 是一个带通滤波器,因为它仅放大 ω 0 \omega_0 ω0附近的频率。 请注意,与上一节中关于曲线形状作为 Q Q Q 的函数的相同评论仍然适用于这两个滤波器。

5、结论

  • 串联 RLC 电路只是三个电子元件的串联组合:电阻器、电感器和电容器。 电阻器的阻抗是实数,电感器和电容器的阻抗是纯虚数,电路的总阻抗是这三个阻抗的总和,因此是一个复数。
  • 电路的瞬态响应首先在第二部分中定义和介绍。 它包括研究提供海维赛电压阶跃时电路的行为。 通过研究与电路相关的二阶微分方程的可能解,出现了三种可能的情况:
    • 欠阻尼响应,信号缓慢振荡至永久值 V i n V_{in} Vin
    • 信号缓慢增加至永久值的过阻尼响应。
    • 临界阻尼响应是信号以最快的速度增加到永久值的情况。
  • 第三部分介绍了电路的交流响应。 当提供交流信号时,微分方程可以写成复数形式,以便找到电路的传递函数。 绘制该函数的范数表明串联 RLC 电路的行为类似于二阶低通滤波器。
  • 在最后一节中,我们研究了称为 RCL 和 CLR 的替代配置。 本节展示了通过简单地切换组件就可以用同一电路制作二阶高通滤波器或带通滤波器。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/162715.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

047_第三代软件开发-日志分离

第三代软件开发-日志分离 文章目录 第三代软件开发-日志分离项目介绍日志分离用法 关键字&#xff1a; Qt、 Qml、 log、 日志、 分离 项目介绍 欢迎来到我们的 QML & C 项目&#xff01;这个项目结合了 QML&#xff08;Qt Meta-Object Language&#xff09;和 C 的强…

计算机毕设 基于大数据的服务器数据分析与可视化系统 -python 可视化 大数据

文章目录 0 前言1 课题背景2 实现效果3 数据收集分析过程**总体框架图****kafka 创建日志主题****flume 收集日志写到 kafka****python 读取 kafka 实时处理****数据分析可视化** 4 Flask框架5 最后 0 前言 &#x1f525; 这两年开始毕业设计和毕业答辩的要求和难度不断提升&a…

项目实战:修改水果库存系统特定库存记录

1、在edit.html修改库存页面添加点击事件 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title</title><link rel"stylesheet" href"style/index.css"><script s…

性能优于BERT的FLAIR:一篇文章入门Flair模型

文章目录 What is FLAIR&#xff1f;FLAIR ModelContextual String Embedding for Sequence Labelingexample FLAIR Application AreaSentiment AnalysisNamed Entity RecognitionText Classification FLAIR一、什么是FLAIR&#xff1f;二、FLAIR Library的优势是什么&#xff…

三:ffmpeg命令帮助文档

目录 一&#xff1a;帮助文档的命令格式 二&#xff1a;将帮助文档输出到文件 一&#xff1a;帮助文档的命令格式 ffmpeg -h帮助的基本信息ffmpeg -h long帮助的高级信息ffmpeg -h full帮助的全部信息 ffmpeg的命令使用方式&#xff1a;ffmpeg [options] [[infile options] …

gorm的自动化工具gen

gorm的自动化工具gen 官方 https://gorm.io/zh_CN/gen/假设数据库结构如 这里使用gen-tool 安装 go install gorm.io/gen/tools/gentoollatest用法 gentool -hUsage of gentool:-c string配置文件名、默认值 “”、命令行选项的优先级高于配置文件。 -db string指定Driver…

美国阿贡国家实验室发布快速自动扫描套件 FAST,助力显微技术「快速阅读」成为可能

「我高兴地在北京市的天安门广场上看红色的国旗升起」 快速阅读一下这个句子&#xff0c;大家可能会发现&#xff0c;只需「我在天安门广场看升旗」几个字&#xff0c;就能概述我们需要的信息&#xff0c;也就是说&#xff0c;无需逐字逐句地阅读&#xff0c;抓住重点即可破译…

Node.js |(五)包管理工具 | 尚硅谷2023版Node.js零基础视频教程

学习视频&#xff1a;尚硅谷2023版Node.js零基础视频教程&#xff0c;nodejs新手到高手 文章目录 &#x1f4da;概念介绍&#x1f4da;npm&#x1f407;安装npm&#x1f407;基本使用&#x1f407;生产依赖与开发依赖&#x1f407;npm全局安装&#x1f407;npm安装指定包和删除…

青翼科技-国产化ARM系列TES720D-KIT

板卡概述 TES720D-KIT是专门针对我司TES720D&#xff08;基于复旦微FMQL20S400的全国产化ARM核心板&#xff09;的一套开发套件&#xff0c;它包含1个TES720D核心板&#xff0c;加上一个TES720D-EXT扩展底板。 FMQL20S400是复旦微电子研制的全可编程融合芯片&#xff0c;在单…

十一、K8S之持久化存储

持久化存储 一、概念 在K8S中&#xff0c;数据持久化可以让容器在重新调度、重启或者迁移时保留其数据&#xff0c;并且确保数据的可靠性和持久性。 持久化存储通常用于程序的状态数据、数据库文件、日志文件等需要在容器生命周期之外的数据&#xff0c;它可以通过各种存储解…

C++ 动态规划。。。

#include <iostream> #include <algorithm> using namespace std; // 定义一个常量&#xff0c;表示无穷大 const int INF 1e9; int dp[1000 2];// 定义一个函数&#xff0c;计算数组中某个区间的和 int sum(int arr[], int start, int end) {int s 0;for (int …

从NetSuite Payment Link杂谈财务自动化、数字化转型

最近在进行信息化的理论学习&#xff0c;让我有机会跳开软件功能&#xff0c;用更加宏大的视野&#xff0c;来审视我们在哪里&#xff0c;我们要到哪去。 在过去20多年&#xff0c;我们的财务软件经历了电算化、网络化、目前处于自动化、智能化阶段。从NetSuite这几年的功能发…