6个机器学习可解释性框架

1、SHAP

SHapley Additive explanation (SHAP)是一种解释任何机器学习模型输出的博弈论方法。它利用博弈论中的经典Shapley值及其相关扩展将最优信贷分配与局部解释联系起来.

举例:基于随机森林模型的心脏病患者预测分类

数据集中每个特征对模型预测的贡献由Shapley值解释。Lundberg和Lee的SHAP算法最初发表于2017年,这个算法在许多不同的领域广泛采用。
在这里插入图片描述

2、LIME

在可解释性领域,LIME是最早出名的方法之一。它能帮助解释机器学习模型正在学习什么以及为什么他们以某种方式预测。Lime目前支持对表格的数据,文本分类器和图像分类器的解释。

知道为什么模型会以这种方式进行预测对于调整算法是至关重要的。借助LIME的解释,能够理解为什么模型以这种方式运行。如果模型没有按照计划运行,那么很可能在数据准备阶段就犯了错误。

3、Shapash

Shapash是一个使机器学习对每个人都可以进行解释和理解Python库。Shapash提供了几种类型的可视化,显示了每个人都能理解的明确标签。数据科学家能更轻松地理解他们的模型并分享结果。最终用户可使用最标准的摘要来理解模型是如何做出判断的。

4、InterpretML

InterpretML是一个开源的Python包,它向研究人员提供机器学习可解释性算法。InterpretML支持训练可解释模型(glassbox),以及解释现有的ML管道(blackbox)。

InterpretML展示了两种类型的可解释性:glassbox模型——为可解释性设计的机器学习模型(如:线性模型、规则列表、广义可加模型)和黑箱可解释性技术——用于解释现有系统(如:部分依赖,LIME)。InterpretML还包括了explanation Boosting Machine的第一个实现,这是一个强大的、可解释的、glassbox模型,可以像许多黑箱模型一样精确。

5、ELI5

ELI5是一个可以帮助调试机器学习分类器并解释它们的预测的Python库。目前支持以下机器学习框架:

  • scikit-learn
  • XGBoost、LightGBM CatBoost
  • Keras

ELI5有两种主要的方法来解释分类或回归模型:

  • 检查模型参数并说明模型是如何全局工作的;
  • 检查模型的单个预测并说明什么模型会做出这样的决定。

6、OmniXAI

OmniXAI (Omni explained AI的简称),是Salesforce最近开发并开源的Python库。它提供全方位可解释的人工智能和可解释的机器学习能力来解决实践中机器学习模型在产生中需要判断的几个问题。对于需要在ML过程的各个阶段解释各种类型的数据、模型和解释技术的数据科学家、ML研究人员,OmniXAI希望提供一个一站式的综合库,使可解释的AI变得简单。
在这里插入图片描述

总结:各种方法的对比

在这里插入图片描述

6个框架的官方地址:

  • https://shap.readthedocs.io/en/latest/index.html
  • https://github.com/marcotcr/lime
  • https://shapash.readthedocs.io/en/latest/
  • https://interpret.ml/
  • https://eli5.readthedocs.io/
  • https://github.com/salesforce/OmniXAI

原文链接:https://cloud.tencent.com/developer/article/2136042

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/164964.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mac下flutter工程配置Gitlab cicd打包(暂时仅限android侧)

写的太粗糙,可能不太适合完全不懂的同学,但是实在没时间,而且也不太会写,权当做一个记录吧,对了还没有搞docker这些,还在持续学习中 1.GitLab Runner(打包机) 注意:需要有对应的权…

跟着森老师学React Hooks(1)——使用Vite构建React项目

Vite是一款构建工具,对ts有很好的支持,最近也是在前端越来越流行。 以往的React项目的初始化方式大多是通过脚手架create-react-app(本质是webpack),其实比起Vite来构建,启动会慢一些。 所以这次跟着B站的一个教程,使用…

关于卷积神经网络的步幅(stride)

认识步幅(stride) 卷积核从输入数组的最左上方开始,按从左往右、从上往下的顺序,依次在输入数组上滑动,我们将每次滑动的行数和列数称为步幅。 计算步幅 假设输入的形状n∗n,卷积核的形状为f∗f&#xff0…

手动关闭PS中的TopazStudio2的登录窗口

2021 adobe photoshop Topaz Studio 2 不是使用防火墙出站规则,是手动关闭的解决方案 点击社区-切换用户,登录窗口会出现X,可以手动关闭

[论文阅读]PV-RCNN++

PV-RCNN PV-RCNN: Point-Voxel Feature Set Abstraction With Local Vector Representation for 3D Object Detection 论文网址:PV-RCNN 论文代码:PV-RCNN 简读论文 这篇论文提出了两个用于3D物体检测的新框架PV-RCNN和PV-RCNN,主要的贡献如下: 提出P…

Gorm 中的钩子和回调

一个全面的指南,利用 GORM 中的钩子和回调的力量,为定制的数据库工作流程 在数据库管理领域,定制化是打造高效和定制化工作流程的关键。GORM,这个充满活力的 Go 对象关系映射库,为开发人员提供了钩子和回调的功能&…

二进制搭建及高可用 Kubernetes v1.20

目录 一、实验规划: 二、操作系统初始化配置: 1. 关闭防火墙 selinux: 2. 关闭swap分区: 3. 根据规划设置主机名: 4. 所有主机添加hosts: 5. 调整内核参数: 6. 时间同步: 三、部署 etcd 集群&#xff1a…

Microsoft Dynamics 365 CE 扩展定制 - 7. 安全

在本章中,我们将介绍以下内容: 构建累积安全角色配置业务单元层次结构基于分层位置配置访问配置和分配字段级安全组建团队并共享设置访问团队对静止数据进行加密以满足FIPS 140-2标准管理Dynamics 365在线SQLTDE加密密钥简介 Dynamics 365是一个强大的平台,具有超过10年的良…

数据库数据迁移常见方式

数据库数据迁移常见方式 数据库数据迁移常见方式1、通过sql2、通过数据迁移工具3、云服务进行数据迁移什么是DRS服务如何使用DRS服务DRS云服务可以干什么 数据库数据迁移常见方式 1、通过sql 批量导入sql insert into tableName select * 2、通过数据迁移工具 在数据库里面…

【ES分词】

分词 #测试分词器 POST /_analyze {"text": "小米手机和华为手机都是国产mobilephone", "analyzer": "english" }不管analyzer是改成:standard还是chinese都无法实现中文分词。 处理中文分词一般采用IK分词器 安装链接&…

3D 线激光相机的激光条纹中心提取方法

论文地址:Excellent-Paper-For-Daily-Reading/application/centerline at main 类别:应用——中心线 时间:2023/11/06 摘要 线激光条纹中心提取是实现线激光相机三维扫描的关键,根据激光三角测量法研制了线激光相机,基于传统 Steger 法对其进行优化并提出一种适用于提…

如何避免JavaScript中的内存泄漏?

前言 过去,我们浏览静态网站时无须过多关注内存管理,因为加载新页面时,之前的页面信息会从内存中删除。 然而,随着单页Web应用(SPA)的兴起,应用程序消耗的内存越来越多,这不仅会降低…