1.该文章属于YOLOV5/YOLOV7/YOLOV8改进专栏,包含大量的改进方式,主要以2023年的最新文章和2022年的文章提出改进方式。
2.提供更加详细的改进方法,如将注意力机制添加到网络的不同位置,便于做实验,也可以当做论文的创新点
3.涨点效果:RefConv,实现有效涨点!
论文地址
目录
1.步骤一
2.步骤二
我们提出了重新参数化的重聚焦卷积(RefConv)作为常规卷积层的替代品,常规卷积层是一个即插即用的模块,可以在不需要任何推理成本的情况下提高性能。具体来说,给定一个预先训练的模型,RefConv对从预先训练的模型继承的基核应用一个可训练的重新聚焦转换,以建立参数之间的连接。例如,一个深度级的RefConv可以将卷积核的一个特定通道的参数与另一个核的参数联系起来,也就是说,使它们重新关注它们从未关注过的模型的其他部分,而不是只关注输入特性。从另一个角度来看,RefCo