【数据结构初阶】算法的时间复杂度和空间复杂度

各位读者老爷好!现在鼠鼠我呀来浅谈一下数据结构初阶中的一个知识点:算法的时间复杂度和空间复杂度,希望对你有所帮助。

在浅谈时间复杂度和空间复杂度之前,咱们可以来了解一下一下几个概念:

1.什么是数据结构

数据结构(Data Structure)是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。

其实简单来说吧。数据结构就是在内存中管理数据。

拓展:

1.什么是数据库? 

简单来说:数据库就是在磁盘中管理数据。

2.内存和磁盘的异同

同:内存和磁盘都是电脑的两个核心存储介质,都是存储数据的两个硬件。

异:内存的速度快,需要带电存储;磁盘的速度(相对)慢,不带电存储。

比如:我们在电脑中创建一个文本文档,在该文档中输入数据,在数据没有保存之前如果电脑突然关机了,那我们重启电脑后这些数据就没有了,因为这些数据是在内存中存储的,内存却需要带电存储。但如果我们在电脑关机之前保存了这些数据,重启之后打开文本文档还可以看到数据,因为保存的数据已经到了磁盘中了,磁盘无需带电存储。(不考虑文本文档有自动保存的情况。)

2.什么是算法 

算法(Algorithm):就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果。

咱们再简单来说。算法就是对数据做各种处理的方法。

那咱们如何判断一个算法的好坏呢?

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度(时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。)。

3.时间复杂度

3.1时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

那时间复杂度该如何计算呢?

咱们来抛砖引玉一下子哈,分析一下下面代码的时间复杂度:

void Func1(int N)//计算Fun1中++count总共执行多少次
{
int count = 0;
for (int i = 0; i < N ; ++ i)
{
for (int j = 0; j < N ; ++ j)
{
++count;
}
}
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n",count);

咱们为了方便介绍,鼠鼠我直接揭晓答案,这个函数的时间复杂度是O(N^2);

那为什么是O(N^2)呢?什么是O(N^2)呢?这就要看下面的知识了:

3.2大O的渐近表示法

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。


推导大O阶方法
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

上面的解释其实意思就是说我们计算时间复杂度用的是大O的渐近表示法表示,时间复杂度都是用O(?)表示的,至于括号里面的问号"?" 该用什么替代我们就要根据推导大O阶方法具体分析了,咱们来分析一下上面的代码看看。

函数Func1中++count的基本操作次数是一个函数F(N)=N^2+2*N+10。根据推导大O阶方法我们可以知道Func1的时间复杂度是O(N^2)。其实推导大O阶方法意思就是去掉那些对结果影响不大的项,推导大O阶方法的思想精髓就是估算。

咱们分析一个代码的时间复杂度看看:

int Func2(int*nums,int numsSize,int n)
{
int i=0;
for(i=0;i<numsSize;i++)
{
if(*(nums+i)==n)
{
return i;
}
}
return -1;
}

咱们看看这个函数Func2中是写不出那个操作次数的函数的,操作次数有三种情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)

咱看这个函数Func2无非就是一种遍历数组的算法,在数组nums的numsSize个元素中遍历找n,找到了返回下标,找不到返回-1。最好情况:1次就找到了;平均情况:numsSize/2次找到了;最坏情况:numsSize次找到了。 所以这个函数的时间复杂度是O(N),因为时间复杂度是保守的估算,取最坏情况。

3.3常见时间复杂度举例分析

上面两个代码计算时间复杂度都是看代码的内容,好像在数循环次数就行。其实不然,看一个算法的时间复杂度要看算法思想,无需了解代码细节,咱们在下面代码来体会。

实例1:

// 计算Func3的时间复杂度?
void Func3(int N)
{
int count = 0;
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}

咱们看这个算法基本操作执行了2N+10次,所以这个时间复杂度是O(N)。为什么不是O(2N)呢?推导大O阶方法第3条可以知道要去除常数2。(举个例子:如果有一颗距离地球100亿光年的适合居住的星球和距离地球200亿光年的适合居住的星球对于人类来说没有区别,因为人类远行距离的量级能达到百亿光年的话,多一个百亿是无所谓的,这里去除常数2就是这个思想。)

实例2:

// 计算Func4的时间复杂度?
void Func4(int N, int M)
{
int count = 0;
for (int k = 0; k < M; ++ k)
{
++count;
}
for (int k = 0; k < N ; ++ k)
{
++count;
}
printf("%d\n", count);
}

这个算法基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M),也可以写成O(max(N,M))。

实例3:

// 计算Func5的时间复杂度?
void Func5(int N)
{
int count = 0;
for (int k = 0; k < 100; ++ k)
{
++count;
}
printf("%d\n", count);
}

这个算法基本操作执行了10次,也就是常数次,通过推导大O阶方法第1条,时间复杂度为 O(1)。

实例4:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}

这里是一个冒泡排序,这个算法呢基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2)。

实例5:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
assert(a);
int begin = 0;
int end = n-1;
// [begin, end]:begin和end是左闭右闭区间,因此有=号
while (begin <= end)
{
int mid = begin + ((end-begin)>>1);
if (a[mid] < x)
begin = mid+1;
else if (a[mid] > x)
end = mid-1;
else
return mid;
}
return -1;
}

这里是一个二分查找。基本操作执行最好1次,最坏O(logN)次(每查找1次可以排除一半,最好情况当然是第1次就找到,最坏情况得查到最后1次,最后1次是第几次呢?我们一共查找了x次,因为每找1次N就除1个2,所以N=2^x,所以最坏要查找x(x等于log以2为底以N为指数)次。)所以时间复杂度为O(logN)。

ps:logN在算法分析中默认表示是底数为2,对数为N。所以这个底数2可以省略,但以其他数为底就不能省略。

根据二分查找算法的时间复杂度O(logN)来看,二分查找是一个很牛的算法,因为根据这个算法就算是有1百万个数据,最多查找20次就够了。但二分查找又不是很牛,因为这个算法有一个致命缺陷,就是要求数据必须有序。

实例6:

/ 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
if(0 == N)
return 1;
return Fac(N-1)*N;
}

咱看这是一个求阶乘的函数。这个函数算法思想无非就是当传参不为0时递归调用函数自己 。那基本调用调用了N+1次,时间累加N+1次,所以时间复杂度是O(N)。

实例7:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}

这是一个递归求斐波那契数的函数。算法思想是双路递归,类似细胞分裂:1生2,2生4……。 所以时间复杂度是O(2^N)。

根据这个时间复杂度O(2^N),我们可以知道这个算法求斐波那契数不是一个好算法,因为指数爆炸太费时间了。那我们采用什么算法求斐波那契数更优呢?鼠鼠我这里写一个代码:

int Fib(size_t N)
{if (N == 1 || N == 2){return 1;}int i1 = 1, i2 = 1, i3 = 0;int j = 0;for (j = 0; j < N - 2;j++){i3 = i1 + i2;i1 = i2;i2 = i3;}return i3;
}

咱们这个代码求斐波那契数的算法就比上面的代码好,这个算法根据思想可知时间复杂度是O(N)。相比于递归算法大大节省时间。所以我们写代码之前需考虑好各种算法的时间复杂度再考虑用哪种算法写代码,能让代码更加优质。 

4.空间复杂度

4.1空间复杂度的概念

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。


空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。


注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

4.2常见的空间复杂度举例分析

实例1:

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}

咱们知道这是一个冒泡排序嘛!那上面代码实现这个算法逻辑的需要额外开辟了常数个(1个)空间 (就是exchange),所以空间复杂度是O(1)。

实例2:

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
if(n==0)
return NULL;
long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n ; ++i)
{
fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
}
return fibArray;
}

这个算法逻辑的实现需要动态开辟malloc了n+1块空间,所以空间复杂度为 O(N)。

实例3:

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
if(N == 0)
return 1;
return Fac(N-1)*N;
}

 这个算法递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)。

5.复杂度的oj练习

消失的数字OJ链接:https://leetcode-cn.com/problems/missing-number-lcci/。打开链接可以做这道题哈!

这道题要求时间在O(N)中完成,鼠鼠我呀有2种解法,咱们依次写写:

解法1:

int missingNumber(int* nums, int numsSize){int sum=(0+numsSize)*(numsSize+1)/2;int i=0;for(i=0;i<numsSize;i++){sum-=*(nums+i);}return sum;
}

这个解题思路就是利用等差数列公式求出0到n所有整数之和,再用这个和依次减去数组元素得到的就是消失的数字呗!这个时间复杂度妥妥是O(N),空间复杂度是O(1),oj是可以通过的,大家可以去试试,鼠鼠我就不展示了哈!

解法2:

int missingNumber(int* nums, int numsSize){int missnum=0,i=0;for(i=0;i<=numsSize;i++){missnum^=i;}for(i=0;i<numsSize;i++){missnum^=nums[i];}return missnum;
}

这个解题思路是:利用0^任何数=任何数、任何数^任何数=0这两个特点 得到的。这个时间复杂度也是O(N),空间复杂度也是O(1),oj也是可以通过的!

6.ending

鼠鼠我呀才疏学浅,如有不足,恳请斧正! 

懂我意思吧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/169026.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Longhorn跨AZ实现存储高可用

Longhorn跨AZ实现存储高可用 longhorn基础组件功能及其作用这里就不做介绍了 方案一 Longhorn跨AZ的高可用的就是一个PVC的replicas 均匀打散的不同的AZ区域之间&#xff0c;这样当某个AZ挂掉后&#xff0c;engine会立即使用另外一个数据副本&#xff0c;并重建这个副本&…

obs whip 100ms端到端时延 webrtc验证

obs----whip---->媒体服务-----whep-----→chrome播放器&#xff08;webrtc demo&#xff09; 所有软件在同一台机器 1&#xff09;h264251080p 平均时延&#xff1a;162.8ms 采样点ms&#xff1a;167151168169151168166168167153 2&#xff09;h264301080p 平均时延&…

nodejs nvm 环境安装踩坑记录--google镜像chatgpt

nvm-win10 nvm : Node Version Manager : 解决版本匹配问题 nvm-windows 安装nvm-windows 安装完nvm-setup.exe后&#xff0c;以管理员权限重新开一个powershell窗口执行以下命令&#xff1a;&#xff08;否则会报错命令找不到&#xff0c;因为刚刚的nvm-setup.exe更新了系统PA…

使用米联客FPGA开发板进行光口开发时遇到的问题总结

使用的开发板型号&#xff1a;米联客MA703FA&#xff0c; 实物图如下 FPGA型号为a35t 米联客提供的开发板资料中的FPGA型号为a100&#xff0c;所以要想使用开发板例程必须进行FPGA的重新选择。如下图 通过对开发板原理图的分析&#xff0c;例程代码不用做任何修改就可使用&am…

XoT:一种新的大语言模型的提示技术

这是微软在11月最新发布的一篇论文&#xff0c;题为“Everything of Thoughts: Defying the Law of Penrose Triangle for Thought Generation”&#xff0c;介绍了一种名为XOT的提示技术&#xff0c;它增强了像GPT-3和GPT-4这样的大型语言模型(llm)解决复杂问题的潜力。 当前提…

【狂神说Java】Dubbo + Zookeeper

✅作者简介&#xff1a;CSDN内容合伙人、信息安全专业在校大学生&#x1f3c6; &#x1f525;系列专栏 &#xff1a;狂神说Java &#x1f4c3;新人博主 &#xff1a;欢迎点赞收藏关注&#xff0c;会回访&#xff01; &#x1f4ac;舞台再大&#xff0c;你不上台&#xff0c;永远…

【SoC基础】DMA的工作原理

&#x1f4e2;&#xff1a;如果你也对机器人、人工智能感兴趣&#xff0c;看来我们志同道合✨ &#x1f4e2;&#xff1a;不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 &#x1f4e2;&#xff1a;文章若有幸对你有帮助&#xff0c;可点赞 &#x1f44d;…

HTML跳转锚点

跳转锚点适用于本页面和其他页面的任意标签的跳转以及JavaScript的运行 使用方法即给标签加上独一无二的id属性&#xff0c;再使用a标签跳转 如果是其他页面的标签只需加上其他页面的路径&#xff0c;eg.href"其他页面的路径#zp1" id属性的最好不要使用数字开头 <…

体验前所未有的显示器管理体验:BetterDisplay Pro Mac

在现代的数字化时代&#xff0c;显示器是我们日常生活和工作中不可或缺的一部分。从笔记本电脑到台式机&#xff0c;从平板电脑到手机&#xff0c;几乎所有的电子设备都配备了显示器。然而&#xff0c;对于专业人士和从事设计行业的人来说&#xff0c;仅仅依靠系统自带的显示器…

SQL 聚合函数

前言 SQL中的聚合函数是对一组值执行计算&#xff0c;并返回单个值的函数。 常用的聚合函数有&#xff1a; 函数作用AVG&#xff08;&#xff09;求平均值MAX&#xff08;&#xff09;求最大值MIN&#xff08;&#xff09;求最小值SUM&#xff08;&#xff09;求和COUNT&…

MATLAB中plot函数用法

目录 语法 说明 向量和矩阵数据 表数据 其他选项 示例 创建线图 绘制多个线条 根据矩阵创建线图 指定线型 指定线型、颜色和标记 在特定的数据点显示标记 指定线宽、标记大小和标记颜色 添加标题和轴标签 绘制持续时间并指定刻度格式 基于表绘制坐标 在一个轴…

百度智能云正式上线Python SDK版本并全面开源!

文章目录 1. SDK的优势2. 千帆SDK&#xff1a;快速落地LLM应用3. 如何快速上手千帆SDK3.1 SDK快速启动3.2 SDK进阶指引3.3 通过Langchain接入千帆SDK 4. 开源社区 百度智能云千帆大模型平台再次升级&#xff01;在原有API基础上&#xff0c;百度智能云正式上线Python SDK&#…