Pytorch损失函数、反向传播和优化器、Sequential使用

Pytorch_Sequential使用、损失函数、反向传播和优化器

文章目录

    • nn.Sequential
    • 搭建小实战
    • 损失函数与反向传播
    • 优化器

nn.Sequential

nn.Sequential是一个有序的容器,用于搭建神经网络的模块被按照被传入构造器的顺序添加到nn.Sequential()容器中。

在这里插入图片描述

在这里插入图片描述

import torch.nn  as nn
from collections import OrderedDict
# Using Sequential to create a small model. When `model` is run,
# input will first be passed to `Conv2d(1,20,5)`. The output of
# `Conv2d(1,20,5)` will be used as the input to the first
# `ReLU`; the output of the first `ReLU` will become the input
# for `Conv2d(20,64,5)`. Finally, the output of
# `Conv2d(20,64,5)` will be used as input to the second `ReLU`
model = nn.Sequential(nn.Conv2d(1,20,5),nn.ReLU(),nn.Conv2d(20,64,5),nn.ReLU())# Using Sequential with OrderedDict. This is functionally the
# same as the above code
model = nn.Sequential(OrderedDict([('conv1', nn.Conv2d(1,20,5)),('relu1', nn.ReLU()),('conv2', nn.Conv2d(20,64,5)),('relu2', nn.ReLU())]))
print(model)
Sequential((conv1): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))(relu1): ReLU()(conv2): Conv2d(20, 64, kernel_size=(5, 5), stride=(1, 1))(relu2): ReLU()
)

搭建小实战

还是以 C I F A R − 10 m o d e l CIFAR-10 model CIFAR10model为例

在这里插入图片描述

  1. 输入图像是3通道的32×32的
  2. 先后经过卷积层(5×5的卷积核)
  3. 最大池化层(2×2的池化核)
  4. 卷积层(5×5的卷积核)
  5. 最大池化层(2×2的池化核)
  6. 卷积层(5×5的卷积核)
  7. 最大池化层(2×2的池化核)
  8. 拉直(flatten)
  9. 全连接层的处理,
  10. 最后输出的大小为10

基于以上的介绍,后续将利用Pytorch构建模型,实现 C I F A R − 10 m o d e l s t r u c t u r e CIFAR-10 \quad model \quad structure CIFAR10modelstructure

参数说明:in_channels: int、out_channels: int,kernel_size: Union由input、特征图以及卷积核即可看出,而stride、padding需要通过公式计算得到。

特得到的具体的特征图尺寸的计算公式如下:
在这里插入图片描述

inputs : 3@32x32,3通道32x32的图片,5*5的kernel --> 特征图(Feature maps) : 32@32x32

即经过32个3@5x5的卷积层,输出尺寸没有变化(有x个卷积核即由x个卷积核,卷积核的通道数与输入的通道数相等)

由上述的计算公式来计算出 s t r i d e stride stride p a d d i n g padding padding

在这里插入图片描述

卷积层中的stride默认为1

池化层中的stride默认为kernel_size的大小

import torch
import torch.nn as nn
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
class BS(nn.Module):def __init__(self):super().__init__()self.conv1 = nn.Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2)  #stride和padding计算得到self.maxpool1 = nn.MaxPool2d(kernel_size=2)self.conv2 = nn.Conv2d(in_channels=32,out_channels=32,kernel_size=5,stride=1,padding=2)self.maxpool2 = nn.MaxPool2d(kernel_size=2)self.conv3 = nn.Conv2d(in_channels=32,out_channels=64,kernel_size=5,padding=2)self.maxpool3 = nn.MaxPool2d(kernel_size=2)self.flatten = nn.Flatten()  #变为63*4*4=1024self.linear1 = nn.Linear(in_features=1024, out_features=64)self.linear2 = nn.Linear(in_features=64, out_features=10)def forward(self,x):x = self.conv1(x)x = self.maxpool1(x)x = self.conv2(x)x = self.maxpool2(x)x = self.conv3(x)x = self.maxpool3(x)x = self.flatten(x)x = self.linear1(x)x = self.linear2(x)return xbs = BS()
bs
BS((conv1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(maxpool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(maxpool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(maxpool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(flatten): Flatten(start_dim=1, end_dim=-1)(linear1): Linear(in_features=1024, out_features=64, bias=True)(linear2): Linear(in_features=64, out_features=10, bias=True)
)

利用Sequential优化代码,并在tensorboard显示

.add_graph函数用于将PyTorch模型图添加到TensorBoard中。通过这个函数,您可以以可视化的方式展示模型的计算图,使其他人更容易理解您的模型结构和工作流程。

add_graph(model, input_to_model, strip_default_attributes=True)
  • model:要添加的PyTorch模型。
  • input_to_model:用于生成模型图的输入数据。
  • strip_default_attributes:是否删除模型中的默认属性,默认为True。
class BS(nn.Module):def __init__(self):super().__init__()self.model = nn.Sequential(nn.Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2),  #stride和padding计算得到nn.MaxPool2d(kernel_size=2),nn.Conv2d(in_channels=32,out_channels=32,kernel_size=5,stride=1,padding=2),nn.MaxPool2d(kernel_size=2),nn.Conv2d(in_channels=32,out_channels=64,kernel_size=5,padding=2),nn.MaxPool2d(kernel_size=2),nn.Flatten(),  #变为64*4*4=1024nn.Linear(in_features=1024, out_features=64),nn.Linear(in_features=64, out_features=10),)def forward(self,x):x = self.model(x)return xbs = BS()
print(bs)
BS((model): Sequential((0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(6): Flatten(start_dim=1, end_dim=-1)(7): Linear(in_features=1024, out_features=64, bias=True)(8): Linear(in_features=64, out_features=10, bias=True))
)
# 在tensorboard中显示
input_ = torch.ones((64,3,32,32))
writer = SummaryWriter(".logs")
writer.add_graph(bs, input_)  # 定义的模型,数据
writer.close()

利用tensorboard可视化网络结构graph如下
在这里插入图片描述

损失函数与反向传播

计算模型目标输出和实际输出之间的误差。并通过反向传播算法更新模型的权重和参数,以减小预测输出和实际输出之间的误差。

  • 计算实际输出和目标输出之间的差距
  • 为更新输出提供一定依据(反向传播)

不同的模型用的损失函数一般也不一样。
在这里插入图片描述

平均绝对误差MAE Mean Absolute Error

torch.nn.L1Loss(size_average=None, reduce=None, reduction=‘mean’)

在这里插入图片描述

import torch
import torch.nn as nn
# 实例化
criterion1 = nn.L1Loss(reduction='mean')#mean
criterion2 = nn.L1Loss(reduction="sum")#sum
output = torch.tensor([1.0, 2.0, 3.0])#或dtype=torch.float32
target = torch.tensor([2.0, 2.0, 2.0])#或dtype=torch.float32
# 平均值损失值
loss = criterion1(output, target)
print(loss)  # 输出:tensor(0.6667)
# 误差和
loss1 = criterion2(output,target)
print(loss1) # tensor(2.)
tensor(0.6667)
tensor(2.)
loss = nn.L1Loss()
input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5)
output = loss(input, target)
output.backward()
output
tensor(1.0721, grad_fn=<MeanBackward0>)

均方误差MSE Mean-Square Error
在这里插入图片描述

torch.nn.MSELoss(size_average=None, reduce=None, reduction=‘mean’)

在这里插入图片描述

import torch.nn as nn
# 实例化
criterion1 = nn.MSELoss(reduction='mean')
criterion2 = nn.MSELoss(reduction="sum")
output = torch.tensor([1, 2, 3],dtype=torch.float32)
target = torch.tensor([1, 2, 5],dtype=torch.float32)
# 平均值损失值
loss = criterion1(output, target)
print(loss)  # 输出:tensor(1.3333)
# 误差和
loss1 = criterion2(output,target)
print(loss1) # tensor(4.)
tensor(1.3333)
tensor(4.)

交叉熵损失 CrossEntropyLoss

torch.nn.CrossEntropyLoss(weight=None,size_average=None,ignore_index=-100,reduce=None,reduction='mean',label_smoothing=0.0)

当你有一个不平衡的训练集时,这是特别有用的
在这里插入图片描述

import torch
import torch.nn as nn# 设置三分类问题,假设是人的概率是0.1,狗的概率是0.2,猫的概率是0.3
x = torch.tensor([0.1, 0.2, 0.3])
print(x)
y = torch.tensor([1]) # 设目标标签为1,即0.2狗对应的标签,目标标签张量y
x = torch.reshape(x, (1, 3))  # tensor([[0.1000, 0.2000, 0.3000]]),批次大小为1,分类数3,即为3分类
print(x)
print(y)
# 实例化对象
loss_cross = nn.CrossEntropyLoss()
# 计算结果
result_cross = loss_cross(x, y)
print(result_cross)
tensor([0.1000, 0.2000, 0.3000])
tensor([[0.1000, 0.2000, 0.3000]])
tensor([1])
tensor(1.1019)
import torch
import torchvision
from torch.utils.data import DataLoader# 准备数据集
dataset = torchvision.datasets.CIFAR10(root="dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# 数据集加载器
dataloader = DataLoader(dataset, batch_size=1)
"""
输入图像是3通道的32×32的,
先后经过卷积层(5×5的卷积核)、
最大池化层(2×2的池化核)、
卷积层(5×5的卷积核)、
最大池化层(2×2的池化核)、
卷积层(5×5的卷积核)、
最大池化层(2×2的池化核)、
拉直、
全连接层的处理,
最后输出的大小为10
"""# 搭建神经网络
class BS(nn.Module):def __init__(self):super().__init__()self.model = nn.Sequential(nn.Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2),  #stride和padding计算得到nn.MaxPool2d(kernel_size=2),nn.Conv2d(in_channels=32,out_channels=32,kernel_size=5,stride=1,padding=2),nn.MaxPool2d(kernel_size=2),nn.Conv2d(in_channels=32,out_channels=64,kernel_size=5,padding=2),nn.MaxPool2d(kernel_size=2),nn.Flatten(),  #变为64*4*4=1024nn.Linear(in_features=1024, out_features=64),nn.Linear(in_features=64, out_features=10),)def forward(self, x):x = self.model(x)return x# 实例化
bs = BS()
loss = torch.nn.CrossEntropyLoss()
# 对每一张图片进行CrossEntropyLoss损失函数计算
# 使用损失函数loss计算预测结果和目标标签之间的交叉熵损失for inputs,labels in dataloader:outputs = bs(inputs)result = loss(outputs,labels)print(result)
tensor(2.3497, grad_fn=<NllLossBackward0>)
tensor(2.2470, grad_fn=<NllLossBackward0>)
tensor(2.2408, grad_fn=<NllLossBackward0>)
tensor(2.2437, grad_fn=<NllLossBackward0>)
tensor(2.3121, grad_fn=<NllLossBackward0>)
........

优化器

优化器(Optimizer)是用于更新神经网络参数的工具

它根据计算得到的损失函数的梯度来调整模型的参数,以最小化损失函数并改善模型的性能

在这里插入图片描述
常见的优化器包括:SGD、Adam

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

model.parameters()用于获取模型的可学习参数

learning rate,lr表示学习率,即每次参数更新的步长

在每个训练批次中,需要执行以下操作:

  1. 输入训练数据到模型中,进行前向传播

  2. 根据损失函数计算损失

  3. 调用优化器的zero_grad()方法清零之前的梯度

  4. 调用backward()方法进行反向传播,计算梯度

  5. 调用优化器的step()方法更新模型参数

伪代码如下(运行不了的)

import torch
import torch.optim as optim# Step 1: 定义模型
model = ...
# Step 2: 定义优化器
optimizer = optim.SGD(model.parameters(), lr=0.01)
# Step 3: 定义损失函数
criterion = ...
# Step 4: 训练循环
for inputs, labels in dataloader:# 前向传播outputs = model(inputs)# 计算损失loss = criterion(outputs, labels)# 清零梯度optimizer.zero_grad()# 反向传播,得到梯度loss.backward()# 更新参数,根据梯度就行优化optimizer.step()

在上述模型代码中,SGD作为优化器,lr为0.01。同时根据具体任务选择适合的损失函数,例如torch.nn.CrossEntropyLoss、torch.nn.MSELoss等,以CIFRA10为例

import torch
import torch.optim as optim
import torchvision
from torch.utils.data import DataLoaderdataset = torchvision.datasets.CIFAR10(root="dataset", train=False, transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=1)
class BS(nn.Module):def __init__(self):super().__init__()self.model = nn.Sequential(nn.Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2),  #stride和padding计算得到nn.MaxPool2d(kernel_size=2),nn.Conv2d(in_channels=32,out_channels=32,kernel_size=5,stride=1,padding=2),nn.MaxPool2d(kernel_size=2),nn.Conv2d(in_channels=32,out_channels=64,kernel_size=5,padding=2),nn.MaxPool2d(kernel_size=2),nn.Flatten(),  #变为64*4*4=1024nn.Linear(in_features=1024, out_features=64),nn.Linear(in_features=64, out_features=10),)def forward(self, x):x = self.model(x)return xmodel = BS()  #定义model
optimizer = optim.SGD(model.parameters(), lr=0.01)  #定义优化器SGD
criterion = nn.CrossEntropyLoss()  #定义损失函数,交叉熵损失函数'''循环一次,只对数据就行了一轮的学习'''
for inputs, labels in dataloader:# 前向传播outputs = model(inputs)# 计算损失loss = criterion(outputs, labels)# 清零梯度optimizer.zero_grad()# 反向传播loss.backward()# 更新参数optimizer.step()# 打印经过优化器后的结果print(loss)"""训练循环20次"""
# for epoch in range(20):
#     running_loss = 0.0
#     for inputs, labels in dataloader:
#         # 前向传播
#         outputs = model(inputs)
#         # 计算损失
#         loss = criterion(outputs,labels)
#         # 清零梯度
#         optimizer.zero_grad()
#         # 反向传播
#         loss.backward()
#         # 更新参数
#         optimizer.step()
#         # 打印经过优化器后的结果
#         running_loss = running_loss + loss
#     print(running_loss)
Files already downloaded and verified
tensor(2.3942, grad_fn=<NllLossBackward0>)
tensor(2.2891, grad_fn=<NllLossBackward0>)
tensor(2.2345, grad_fn=<NllLossBackward0>)
tensor(2.2888, grad_fn=<NllLossBackward0>)
tensor(2.2786, grad_fn=<NllLossBackward0>)
........

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/169831.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RT-DETR 应用 CARAFE:特征内容感知重新组装

特征上采样是现代卷积神经网络架构中的关键操作,例如特征金字塔。其设计对于密集预测任务,如目标检测和语义/实例分割至关重要。在本研究中,我们提出了一种称为内容感知特征重组(CARAFE)的通用、轻量级且高效的操作符,以实现这一目标。CARAFE具有以下几个优点:(1)大的…

Powerpoint不小心被覆盖?PPT误删文件如何恢复?

PowerPoint不小心删除了&#xff0c;这可能是众多学生和工作人员最头痛的事情了。PPT被覆盖或误删可能意味着几个小时的努力付之东流。那么PPT覆盖的文档要如何救回来呢&#xff1f;小编将会在本篇文章中为大家分享几个解决方案&#xff0c;使PPT文档覆盖还原操作成为可能&…

【机器学习基础】机器学习概述

目录 前言 一、机器学习概念 二、机器学习分类 三、机器学习术语 &#x1f308;嗨&#xff01;我是Filotimo__&#x1f308;。很高兴与大家相识&#xff0c;希望我的博客能对你有所帮助。 &#x1f4a1;本文由Filotimo__✍️原创&#xff0c;首发于CSDN&#x1f4da;。 &#x…

UE特效案例 —— 角色刀光

目录 一&#xff0c;环境配置 二&#xff0c;场景及相机设置 三&#xff0c;效果制作 刀光制作 地裂制作 击打地面炸开制作 一&#xff0c;环境配置 创建默认地形Landscape&#xff0c;如给地形上材质需确定比例&#xff1b;添加环境主光源DirectionalLight&#xff0c;设…

C++语法---模板进阶知识

绪论​ “那些看似不起波澜的日复一日&#xff0c;会在某天让你看到坚持的意义。”本篇文章主要写到非类型的模板参数、模板的特化、模板的分离编译问题、以及适配器和仿函数的使用讲解&#xff0c;在之前已经将模板的基本使用进行了学习&#xff08;可见c模板&#xff09;话不…

Linux如何修改主机名(hostname)(亲测可用)

文章目录 背景Linux如何修改主机名&#xff08;hostname&#xff09;方法方法1. 使用 hostnamectl 命令示例 2. 编辑 /etc/hostname 文件注意事项 背景 我创建虚拟机的时候没设置主机名&#xff0c;现在显示localhost&#xff0c;有点尴尬&#x1f605;&#xff1a; 需要重新设…

你一定要学会的Java语法 -- 【继承】

书接上回&#xff0c;我们已经学完了类和对象&#xff0c;今天内容可能有一点难&#xff0c;相信自己能跨过这道坎。 目录 一. 继承 1.什么是继承 2. 继承的概念 3. 继承的语法 4.父类成员访问 子类和父类成员变量同名 子类和父类成员方法同名 5.super关键字 6.子类构…

实操创建属于自己的亚马逊云科技VPS服务:Amazon Lightsail

本文主要讲述如何独立创建自己的亚马逊云科技VPS服务&#xff0c;希望此文能帮助你对亚马逊云科技VPS服务也就是Amazon Lightsail&#xff0c;有个新的认识&#xff0c;对所使用的VPS有所帮助。 Amazon Lightsail是一款无论云计算的新手还是专家&#xff0c;都可通过其快速启动…

MSF图形化工具Viper快速安装

简介 Viper(炫彩蛇)是一款图形化内网渗透工具,将内网渗透过程中常用的战术及技术进行模块化及武器化. Viper(炫彩蛇)集成杀软绕过,内网隧道,文件管理,命令行等基础功能. Viper(炫彩蛇)当前已集成70个模块,覆盖初始访问/持久化/权限提升/防御绕过/凭证访问/信息收集/横向移动等…

Java图像编程之:Graphics

一、概念介绍 1、Java图像编程的核心类 Java图像编程的核心类包括&#xff1a; BufferedImage&#xff1a;用于表示图像的类&#xff0c;可以进行像素级的操作。Image&#xff1a;表示图像的抽象类&#xff0c;是所有图像类的基类。ImageIcon&#xff1a;用于显示图像的类&a…

网络爬虫代理ip有什么好处?爬虫工作使用代理IP有哪些优势?

在爬虫工作中&#xff0c;使用代理IP有很多好处&#xff0c;可以帮助爬虫程序更加高效地完成任务。以下是使用代理IP的几个优势&#xff1a; 1. 增加匿名性 使用代理IP可以隐藏爬虫程序的真正IP地址&#xff0c;增加匿名性&#xff0c;避免被目标网站封禁。通过代理IP&#xff…

ida81输入密码验证算法分析以及破解思路

本文分析了ida81对输入密码的验证流程&#xff0c;分别对输入密码到生成解密密钥、密码素材的生成过程以及文件数据的加密过程这三个流程进行分析&#xff0c;并尝试找一些可利用的破绽。很遗憾&#xff0c;由于水平有限&#xff0c;目前也只是有个思路未能完全实现&#xff0c…