MySQL锁机制详解

概述

锁是计算机协调多个进程或线程并发访问某一资源的机制。

在数据库中,除了传统的计算资源(如CPU、RAM、I/O等)的争用以外,数据也是一种供需要用户共享的资源。如何保证数据并发访问的一致性、有效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素。

锁分类

锁粒度: 表锁、页锁、行锁。

锁性质: 共享(读)锁、排他(写)锁、意向共享(读)锁、意向排他(写)锁。

锁思想: 悲观锁、乐观锁。

读锁(共享锁,S锁(Shared))

读取操作(SELECT)时创建的锁。其他用户可以并发读取数据,但在读锁未释放前,也就是查询事务结束前,任何事务都不能对数据进行修改(获取数据上的写锁),直到已释放所有读锁。

如果事务A对数据B(1024房)加上读锁后,则其他事务只能对数据B上加读锁,不能加写锁。获得读锁的事务只能读数据,不能修改数据。

针对同一份数据,多个读操作可以同时进行而不会互相影响,比如:

SELECT * FROM `user` WHERE id = 1 lock in share mode

写锁(排它锁,X锁(eXclusive))

如果事务A对数据B加上写锁后,则其他事务不能再对数据B加任何类型的锁。获得写锁的事务既能读数据,又能修改数据。

当前写操作没有完成前,它会阻断其他写锁和读锁,数据修改操作都会加写锁,查询也可以通过for update加写锁,比如:

SELECT * FROM `user` WHERE id = 1 for update

意向锁(Intention Lock)

意向锁(Intention Lock)又称I锁,针对表锁,主要是为了提高加表锁的效率,是mysql数据库自己加的。当有事务给表的数据行加了共享锁或排他锁,同时会给表设置一个标识,代表已经有行锁了,其他事务要想对表加表锁时,就不必逐行判断有没有行锁可能跟表锁冲突了,直接读这个标识就可以确定自己该不该加表锁。特别是表中的记录很多时,逐行判断加表锁的方式效率很低。而这个标识就是意向锁。

意向共享锁,IS锁,对整个表加共享锁之前,需要先获取到意向共享锁。

意向排他锁,IX锁,对整个表加排他锁之前,需要先获取到意向排他锁。

表锁

表级别的锁定是MySQL各存储引擎中最大颗粒度的锁定机制。该锁定机制最大的特点是实现逻辑非常简单,带来的系统负面影响最小。所以获取锁和释放锁的速度很快。由于表级锁一次会将整个表定,所以可以很好的避免困扰我们的死锁问题。

使用表级锁定的主要是MyISAM,MEMORY,CSV等一些非事务性存储引擎。

每次操作锁住整张表。开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低;一般用在整表数据迁移的场景。

--手动增加表锁
lock table 表名称 read(write),表名称2 read(write);
--查看表上加过的锁
show open tables;
--删除表锁
unlock tables;

页锁

只有BDB存储引擎支持页锁,页锁就是在页的粒度上进行锁定,锁定的数据资源比行锁要多,因为一个页中可以有多个行记录。当我们使用页锁的时候,会出现数据浪费的现象,但这样的浪费最多也就是一个页上的数据行。页锁的开销介于表锁和行锁之间,会出现死锁。锁定粒度介于表锁和行锁之间,并发度一般。

行锁

每次操作锁住一行数据。开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度最高。

InnoDB相对于MYISAM的最大不同有两点:

  1. InnoDB支持事务(TRANSACTION)
  2. InnoDB支持行级锁

InnoDB的行锁实际上是针对索引加的锁(在索引对应的索引项上做标记),不是针对整个行记录加的锁。并且该索引不能失效,否则会从行锁升级为表锁。(RR级别会升级为表锁,RC级别不会升级为表锁)

select * from account where name = 'lilei' for update;   
#where条件里的name字段无索引则其它Session对该表任意一行记录做修改操作都会被阻塞住。

关于RR级别行锁升级为表锁的原因分析:

因为在RR隔离级别下,需要解决不可重复读和幻读问题,所以在遍历扫描聚集索引记录时,为了防止扫描过的索引被其它事务修改(不可重复读问题) 或 间隙被其它事务插入记录(幻读问题),从而导致数据不一致,所以MySQL的解决方案就是把所有扫描过的索引记录和间隙都锁上,这里要注意,并不是直接将整张表加表锁,因为不一定能加上表锁,可能会有其它事务锁住了表里的其它行记录。

间隙锁(Gap Lock)

间隙锁,锁的就是两个值之间的空隙,间隙锁是在可重复读隔离级别下才会生效。

Mysql默认级别是repeatable-read,有幻读问题,间隙锁是可以解决幻读问题的。

account表数据如下:

在这里插入图片描述
那么间隙就有 id 为 (3,10),(10,20),(20,30),(30,正无穷) 这四个区间。

如果执行下面这条sql:

BEGIN;SELECT * FROM account WHERE id = 18 for UPDATE;#COMMIT;

则其他Session没法在这个(20,30)这个间隙范围里插入任何数据。
也就是说,只要在间隙范围内锁了一条不存在的记录会锁住整个间隙范围,不锁边界记录,这样就能防止其它Session在这个间隙范围内插入数据,就解决了可重复读隔离级别的幻读问题。

临键锁(Next-key Locks)

Next-Key Locks是行锁与间隙锁的组合。

总结

MyISAM在执行查询语句SELECT前,会自动给涉及的所有表加读锁,在执行update、insert、delete操作会自动给涉及的表加写锁。

InnoDB在执行查询语句SELECT时(非串行隔离级别),不会加锁。但是update、insert、delete操作会加行锁。
另外,读锁会阻塞写,但是不会阻塞读。而写锁则会把读和写都阻塞。

Innodb存储引擎由于实现了行级锁定,虽然在锁定机制的实现方面所带来的性能损耗可能比表级锁定会要更高一下,但是在整体并发处理能力方面要远远优于MYISAM的表级锁定的。当系统并发量高的时候,Innodb的整体性能和MYISAM相比就会有比较明显的优势了。

但是,Innodb的行级锁定同样也有其脆弱的一面,当我们使用不当的时候,可能会让Innodb的整体性能表现不仅不能比MYISAM高,甚至可能会更差。

锁等待分析

通过检查InnoDB_row_lock状态变量来分析系统上的行锁的争夺情况

show status like 'innodb_row_lock%';对各个状态量的说明如下:
Innodb_row_lock_current_waits: 当前正在等待锁定的数量
Innodb_row_lock_time: 从系统启动到现在锁定总时间长度
Innodb_row_lock_time_avg: 每次等待所花平均时间
Innodb_row_lock_time_max:从系统启动到现在等待最长的一次所花时间
Innodb_row_lock_waits: 系统启动后到现在总共等待的次数对于这5个状态变量,比较重要的主要是:
Innodb_row_lock_time_avg (等待平均时长)
Innodb_row_lock_waits (等待总次数)
Innodb_row_lock_time(等待总时长)

尤其是当等待次数很高,而且每次等待时长也不小的时候,我们就需要分析系统中为什么会有如此多的等待,然后根据分析结果着手制定优化计划。

查看INFORMATION_SCHEMA系统库锁相关数据表

-- 查看事务
select * from INFORMATION_SCHEMA.INNODB_TRX;
-- 查看锁,8.0之后需要换成这张表performance_schema.data_locks
select * from INFORMATION_SCHEMA.INNODB_LOCKS;  
-- 查看锁等待,8.0之后需要换成这张表performance_schema.data_lock_waits
select * from INFORMATION_SCHEMA.INNODB_LOCK_WAITS;  -- 释放锁,trx_mysql_thread_id可以从INNODB_TRX表里查看到
kill trx_mysql_thread_id-- 查看锁等待详细信息
show engine innodb status; 

死锁问题分析

set tx_isolation='repeatable-read';
Session_1执行:select * from account where id=1 for update;
Session_2执行:select * from account where id=2 for update;
Session_1执行:select * from account where id=2 for update;
Session_2执行:select * from account where id=1 for update;
查看近期死锁日志信息:show engine innodb status; 

大多数情况mysql可以自动检测死锁并回滚产生死锁的那个事务,但是有些情况mysql没法自动检测死锁,这种情况我们可以通过日志分析找到对应事务线程id,可以通过kill杀掉。

锁优化实践

尽可能让所有数据检索都通过索引来完成,避免无索引行锁升级为表锁。
合理设计索引,尽量缩小锁的范围。
尽可能减少检索条件范围,避免间隙锁。
尽量控制事务大小,减少锁定资源量和时间长度,涉及事务加锁的sql尽量放在事务最后执行。
尽可能用低的事务隔离级别。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/171794.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

git快速上传代码

① git init; 初始化git,之后在文件夹里有.git文件,这个需要 勾选才能查看。 ② git remote add test myFisrtTest: 测试专用 这里的test是自定义的,myFisrtTest: 测试专用 是远程仓库 ③ git branch -a 这里是查看分支 ④ …

【JavaEE初阶】IP协议简介

文章目录 前言🌴IP协议的概念🌳IP数据报🚩IPv4协议头格式🚩IPv6的诞生 🎍IP地址🚩IP地址的格式:🚩IP地址的分类🎈网络号与主机号的划分 🚩特殊的IP地址&#…

线性代数(五) | 矩阵对角化 特征值 特征向量

文章目录 1 矩阵的特征值和特征向量究竟是什么?2 求特征值和特征向量3 特征值和特征向量的应用4 矩阵的对角化 1 矩阵的特征值和特征向量究竟是什么? 矩阵实际上是一种变换,是一种旋转伸缩变换(方阵) 不是方阵的话还有可能是一种…

KOSMOS-G-图像文本结合控制生成

文章目录 摘要引言算法多模态语言建模图像解码器对齐微调instruction 实验结论 论文: 《Kosmos-G: Generating Images in Context with Multimodal Large Language Models》 github: https://github.com/microsoft/unilm/tree/master/kosmos-g 摘要 当…

原型设计模式

1、实现 原型模式的克隆分为浅克隆和深克隆。 浅克隆:创建一个新对象,新对象的属性和原来对象完全相同,对于非基本类型属性,仍指向原有属性所指向的对象的内存地址。 深克隆:创建一个新对象,属性中引用…

蓝桥杯算法竞赛第一周题型总结

本专栏内容为:蓝桥杯学习专栏,用于记录蓝桥杯的学习经验分享与总结。 💓博主csdn个人主页:小小unicorn ⏩专栏分类:C 🚚代码仓库:小小unicorn的代码仓库🚚 🌹&#x1f33…

2023.11.12使用flask对图片进行黑白处理(base64编码方式传输)

2023.11.12使用flask对图片进行黑白处理(base64编码方式传输) 由前端输入图片并预览,在后端处理图片后返回前端显示,可以作为图片处理的模板。 关键点在于对图片进行base64编码的转化。 使用Base64编码可以更方便地将图片数据嵌入…

初阶JavaEE(17)Linux 基本使用和 web 程序部署

接上次博客:初阶JavaEE(16)博客系统(Markdown编辑器介绍、博客系统功能、博客系统编写:博客列表页 、博客详情页、实现登录、实现强制登录、显示用户信息、退出登录、发布博客)-CSDN博客 目录 Linux 基本…

Zigbee智能家居方案设计

背景 目前智能家居物联网中最流行的三种通信协议,Zigbee、WiFi以及BLE(蓝牙)。这三种协议各有各的优势和劣势。本方案基于CC2530芯片来设计,CC2530是TI的Zigbee芯片。 网关使用了ESP8266CC2530。 硬件实物 节点板子上带有继电器…

Git企业开发级讲解(二)

📘北尘_:个人主页 🌎个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上,不忘来时的初心 文章目录 一、添加⽂件--场景⼀1、操作2、演示 二、查看 .git ⽂件1、tree .git命令2、内容讲解3、总结…

数据结构哈希表(散列)Hash,手写实现(图文推导)

目录 一、介绍 二、哈希数据结构 三、✍️实现哈希散列 1. 哈希碰撞💥 2. 拉链寻址⛓️ 3. 开放寻址⏩ 4. 合并散列 一、介绍 哈希表,也被称为散列表,是一种重要的数据结构。它通过将关键字映射到一个表中的位置来直接访问记录&#…

Day10—SQL那些事(特殊场景的查询)

文章目录 1、只想查一个字段却不得不左连接好多张表2、左连接的时候只想取最后一条数据 1、只想查一个字段却不得不左连接好多张表 只想查一个字段却不得不左连接好多张表,而且因为左连接的表太多还导致查出来的数据重复 原先的sql SELECTsph.po_num,chh.visa_ex…