【深度学习】吴恩达课程笔记(四)——优化算法

笔记为自我总结整理的学习笔记,若有错误欢迎指出哟~

【吴恩达课程笔记专栏】
【深度学习】吴恩达课程笔记(一)——深度学习概论、神经网络基础
【深度学习】吴恩达课程笔记(二)——浅层神经网络、深层神经网络
【深度学习】吴恩达课程笔记(三)——参数VS超参数、深度学习的实践层面

吴恩达课程笔记——优化算法

  • 优化算法介绍
  • 批量梯度下降(Batch Gradient Descent)
    • 目的
    • 步骤
    • 优点
    • 缺点
  • 随机梯度下降(Stochastic Gradient Descent, SGD)
    • 目的
    • 步骤
    • 优点
    • 缺点
  • 小批量梯度下降(Mini-batch Gradient Descent)
    • 目的
    • 步骤
    • 优点
    • 缺点
    • 理解
    • 如何选择mini-batch size
  • 指数加权平均数(Exponentially Weighted Averages)
    • 目的
    • 步骤
    • 优点
    • 缺点
    • 具体加权过程举例
  • 指数加权平均的偏差修正
  • 动量梯度下降法 (Gradient descent of Momentum)
    • 目的
    • 基本原理
  • RMSprop
    • 目的
    • 优点
    • 基本原理
  • Adam 优化算法(Adam optimization algorithm)
    • 简介
    • 工作方式
    • 优点
    • 算法
  • 学习率衰减(Learning rate decay)
    • 做法
    • 几种公式
  • 局部最优问题
  • Adam 优化算法(Adam optimization algorithm)
    • 简介
    • 工作方式
    • 优点
    • 算法
  • 学习率衰减(Learning rate decay)
    • 做法
    • 几种公式
  • 局部最优问题

优化算法介绍

当涉及深度学习优化算法时,我们通常会面临一个目标:最小化一个损失函数。这个损失函数衡量了模型预测与实际值之间的差距。为了找到最佳的模型参数,我们需要使用优化算法来调整这些参数,以便最小化损失函数。

以下是一些常用的深度学习优化算法:

  1. 梯度下降(Gradient Descent):通过计算成本函数相对于参数的梯度,并沿着梯度的反方向更新参数,以最小化成本函数。
  2. 随机梯度下降(Stochastic Gradient Descent, SGD):与梯度下降类似,但是每次迭代中只使用一个样本来计算梯度,这在大型数据集上更有效。
  3. 小批量梯度下降(Mini-batch Gradient Descent):结合了批量梯度下降和随机梯度下降的优点,每次迭代使用一小批样本来计算梯度。
  4. 指数加权平均数( Exponentially weighted averages):常用于计算梯度的指数加权平均或者计算参数的指数加权平均。
  5. 动量梯度下降法 (Gradient descent of Momentum) :梯度下降算法的一种改进版本,它结合了梯度下降和动量的概念。
  6. RMSProp:通过考虑梯度的平方的指数衰减平均值来调整学习率,以应对Adagrad的学习率急剧下降问题。
  7. Adam 优化算法(Adam optimization algorithm) :在训练神经网络时有效地调整参数,并能够适应不同参数的变化情况,结合了动量梯度下降法和RMSProp算法。
  8. 学习率衰减(Learning rate decay) :在训练神经网络时逐渐降低学习率的过程。

这些算法都有各自的优劣势,适用于不同类型的深度学习任务。在实际应用中,通常需要根据具体问题和数据集的特点来选择合适的优化算法。

批量梯度下降(Batch Gradient Descent)

目的

批量梯度下降是为了优化模型参数,使得损失函数达到最小值,从而实现训练数据的拟合和模型的泛化能力。

步骤

  1. 初始化参数:随机初始化模型参数或采用预训练的参数作为初始值。

  2. 对于整个训练样本集合进行如下操作

    • 计算梯度:计算损失函数关于所有训练样本的参数的梯度,即
      ∇ J ( θ ) = 1 m ∑ i = 1 m ∇ J ( θ ; x ( i ) , y ( i ) ) \nabla J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla J(\theta; x^{(i)}, y^{(i)}) J(θ)=m1i=1mJ(θ;x(i),y(i))

    • 更新参数:利用所有训练样本的梯度信息,按照梯度下降的更新规则来更新模型参数:
      θ = θ − η ⋅ ∇ J ( θ ) \theta = \theta - \eta \cdot \nabla J(\theta) θ=θηJ(θ)
      其中, ( η ) 是学习率, ( m ) 是训练样本的数量。

优点

  • 可以保证收敛性,即在合理的学习率下,批量梯度下降一定可以找到全局最优解或局部最优解。

缺点

  • 当训练样本很大时,计算所有训练样本的梯度会非常耗时,尤其在内存有限的情况下。
  • 对于大规模数据集,批量梯度下降的计算效率较低。

随机梯度下降(Stochastic Gradient Descent, SGD)

目的

随机梯度下降(Stochastic Gradient Descent, SGD)是梯度下降法的一种变种

通过每次迭代仅利用单个训练样本的梯度信息,来更新模型参数,从而减少计算开销,并加快收敛速度。

步骤

  1. 初始化参数:随机初始化模型参数或采用预训练的参数作为初始值。

  2. 对于每个训练样本 (x(i), y(i)) 进行如下操作

    • 计算梯度:计算损失函数关于当前样本的参数的梯度,即

      ∇ J ( θ ; x ( i ) , y ( i ) ) \nabla J(\theta; x^{(i)}, y^{(i)}) J(θ;x(i),y(i))

    • 更新参数:利用当前样本的梯度信息,按照梯度下降的更新规则来更新模型参数:

      θ = θ − η ⋅ ∇ J ( θ ; x ( i ) , y ( i ) ) \theta = \theta - \eta \cdot \nabla J(\theta; x^{(i)}, y^{(i)}) θ=θηJ(θ;x(i),y(i))

      其中,( η )是学习率。

优点

  • 减少计算开销:由于每次仅利用单个样本来更新参数,相比批量梯度下降,SGD在计算上更为高效。
  • 适用于大规模数据集:特别适用于大规模数据集,因为每次迭代只需要处理一个样本。

缺点

  • 不稳定性:由于每次迭代仅利用单个样本,使得更新方向带有较大的随机性,可能导致收敛过程不稳定。
  • 学习率调整困难:学习率的选择对于SGD的影响较大,需要谨慎调整。

小批量梯度下降(Mini-batch Gradient Descent)

目的

小批量梯度下降是为了优化模型参数,使得损失函数达到最小值,从而实现训练数据的拟合和模型的泛化能力。

步骤

  1. 初始化参数:随机初始化模型参数或采用预训练的参数作为初始值。

  2. 对于每个小批量样本(x(i), y(i)) 进行如下操作

    • 计算梯度:计算损失函数关于当前小批量样本的参数的梯度,即
      1 m ∑ i = 1 m ∇ J ( θ ; x ( i ) , y ( i ) ) \frac{1}{m} \sum_{i=1}^{m} \nabla J(\theta; x^{(i)}, y^{(i)}) m1i=1mJ(θ;x(i),y(i))

    • 更新参数:利用当前小批量样本的梯度信息,按照梯度下降的更新规则来更新模型参数:
      θ = θ − η ⋅ 1 m ∑ i = 1 m ∇ J ( θ ; x ( i ) , y ( i ) ) \theta = \theta - \eta \cdot \frac{1}{m} \sum_{i=1}^{m} \nabla J(\theta; x^{(i)}, y^{(i)}) θ=θηm1i=1mJ(θ;x(i),y(i))
      其中, ( η ) 是学习率, ( m ) 是小批量样本的大小。

优点

  • 小批量梯度下降结合了梯度下降和随机梯度下降的优点,可以更快地收敛到局部最优解。
  • 可以充分利用矩阵运算的并行性,提高计算效率。

缺点

  • 需要调节的超参数更多,如学习率 ( η ) 和小批量样本的大小 ( m )。
  • 需要对数据进行分批处理,增加了实现的复杂性。

理解

定义梯度下降时使用一次全部样本集合为一代

  1. batch梯度下降的 J 会不断下降;mini-batch梯度下降的 J 不一定会不断下降,但是整体呈现下降趋势。

在这里插入图片描述

  1. 两者都需要多次遍历全部数据集才会有效果。在mini-batch中,如果只经历一代,那么梯度下降的效果虽然比batch一代好,但总体效果仍是微小的。

  2. 使用mini-batch时,每重新开始遍历一次数据集,应当把数据集中的数据重新打乱分配到mini-batch中,体现出随机性

如何选择mini-batch size

  1. 小训练集:使用batch gradient decent(m less than 2000)
  2. 通常的minibatch size:64、128、256、512、1024

指数加权平均数(Exponentially Weighted Averages)

目的

指数加权平均数用于对时间序列数据进行平滑处理,以便观察数据的长期趋势。

步骤

假设给定一个序列 ( x1, x2, …, xt ),其指数加权平均数 ( vt ) 的计算方式为:

v t = β v t − 1 + ( 1 − β ) x t v_t = \beta v_{t-1} + (1-\beta) x_t vt=βvt1+(1β)xt
( 0 < 𝛽 < 1 ) 被称为平滑因子,较大的平滑因子意味着新观测值对平均数的影响更大,从而使得平均数更快地适应最新的观测值;而较小的平滑因子则意味着平均数更加稳定、更不容易受到新观测值的影响。

( v0 ) 可以被初始化为 0 或者 x1 ,为了在开始时确定初始的指数加权平均数值

优点

  • 对不同时刻的数据赋予不同的权重,更加灵活地适应数据变化。
  • 计算高效,每次更新只需要一次乘法和一次加法运算。

缺点

  • 对于某些特定类型的数据,可能对异常值(outliers)过于敏感,从而影响平均值的准确性。

具体加权过程举例

在这里插入图片描述
假设英国去年第t天的气温是θt
在这里插入图片描述
要用一条曲线拟合温度变化,可以进行如下操作
v 0 = 0 v t = β v t − 1 + ( 1 − β ) θ t v_0=0 \\ v_t=\beta v_{t-1}+(1-\beta)\theta_t v0=0vt=βvt1+(1β)θt

其中 vt 是第t天附近的 1/(1-𝛽) 天的平均天气。

为什么这么规定?

( 1 − ε ) 1 / ε 约等于 1 e (数学中一个挺重要的数) 这说明 1 1 − β 天之外的数所占的权重总共不到 1 e ,不那么值得关注了 (1-ε)^{1/ε}约等于\frac{1}{e}(数学中一个挺重要的数)\\ 这说明\frac{1}{1-\beta}天之外的数所占的权重总共不到\frac{1}{e},不那么值得关注了 1ε1/ε约等于e1(数学中一个挺重要的数)这说明1β1天之外的数所占的权重总共不到e1,不那么值得关注了

β = 0.9 ( 1 − 0.1 ) 1 0.1 = 0. 9 10 β = 0.98 ( 1 − 0.02 ) 1 0.02 = 0.9 8 50 \beta = 0.9\\ (1-0.1)^{\frac{1}{0.1}} = 0.9^{10} \\ \beta = 0.98 \\ (1-0.02)^{\frac{1}{0.02}} = 0.98^{50} β=0.9(10.1)0.11=0.910β=0.98(10.02)0.021=0.9850

可以看出 𝛽 越大,平均的天数越大,拟合得越粗略。
在这里插入图片描述
红色:𝛽=0.9;绿色:𝛽=0.98

指数加权平均的偏差修正

在这里插入图片描述
由于v0=0,v1=𝛽 v0 + (1-𝛽) θ1 = (1-𝛽)θ1,前几个vi的值会非常的小,如图中紫线。当迭代到一定数量之后,拟合才变得正常(紫线逼近绿线)。

偏差修正的目的是为了消除初始时刻的平均值对整体平均值的影响。偏差修正可以通过以下公式实现:
v t ^ = v t 1 − α t v t ^ 表示经过偏差修正后的平均值 v t 表示未经修正的平均值 β 为平滑因子 t 表示时间步 \hat{v_t} = \frac{v_t}{1 - \alpha^t} \\ \hat{v_t} 表示经过偏差修正后的平均值\\ v_t 表示未经修正的平均值\\ \beta 为平滑因子\\ t 表示时间步\\ vt^=1αtvtvt^表示经过偏差修正后的平均值vt表示未经修正的平均值β为平滑因子t表示时间步
通过偏差修正,可以有效地减小最初几个数据点对平均值的影响,得到更加准确和稳定的指数加权平均值。

动量梯度下降法 (Gradient descent of Momentum)

目的

加速梯度下降过程

基本原理

传统的梯度下降法在更新参数时只考虑当前的梯度值,而动量梯度下降法引入了一个额外的动量项,用于模拟物理中的动量效应。

在每次参数更新时,动量梯度下降法会根据当前梯度和上一次的动量来计算一个更新量,并将该更新量应用于参数。更新量由两部分组成:一部分是当前梯度的方向,另一部分是上一次动量的方向。
在这里插入图片描述
蓝线是一般梯度下降的成本函数值迭代情况,红线是动量梯度下降法中成本函数迭代境况。

我们使用指数加权平均来计算新的dW和db。在竖直方向上,由于平均值接近0,所以动量梯度下降的竖直方向迭代值接近0 。在水平方向上,动量梯度下降的迭代值则为正常水平。
d w = β ⋅ d w t − 1 + ( 1 − β ) ⋅ ∂ J ∂ w d b = β ⋅ d b t − 1 + ( 1 − β ) ⋅ ∂ J ∂ b w = w − α ⋅ d w b = b − α ⋅ d b dw = \beta \cdot dw_{t-1} + (1 - \beta) \cdot \frac{\partial J}{\partial w}\\ db = \beta \cdot db_{t-1} + (1 - \beta) \cdot \frac{\partial J}{\partial b}\\ w = w - \alpha \cdot dw\\ b = b - \alpha \cdot db\\ dw=βdwt1+(1β)wJdb=βdbt1+(1β)bJw=wαdwb=bαdb

β 是动量系数 , 通常取 0.9 α 是学习率 J 是损失函数 d w t − 1 和 d b t − 1 表示上一次的权重和偏置更新量 ∂ J ∂ w 和 ∂ J ∂ b 分别是损失函数对权重和偏置的偏导数 w 和 b 分别表示更新后的权重和偏置 \beta 是动量系数,通常取0.9\\ \alpha 是学习率\\ J 是损失函数\\ dw_{t-1} 和 db_{t-1} 表示上一次的权重和偏置更新量\\ \frac{\partial J}{\partial w} 和 \frac{\partial J}{\partial b} 分别是损失函数对权重和偏置的偏导数\\ w 和 b 分别表示更新后的权重和偏置 β是动量系数,通常取0.9α是学习率J是损失函数dwt1dbt1表示上一次的权重和偏置更新量wJbJ分别是损失函数对权重和偏置的偏导数wb分别表示更新后的权重和偏置

RMSprop

目的

解决传统梯度下降法中学习率衰减过快的问题。RMSprop通过对梯度的平方进行指数加权移动平均来调整学习率,从而加速模型的训练。

优点

使用它的时候可以适当加大学习率

基本原理

在这里插入图片描述
如图,我们不想要绿线,而想要蓝线。

我们需要计算一个额外变量S,S等于目前数据附近水平方向或竖直方向的dX的方差。

我们在更新数据(W、b)的时候,把原来要减掉的dX除以这个方差,那么方差大的方向变化量就减少,方差小的方向变化量就仍处于正常水平甚至增大。

Adam 优化算法(Adam optimization algorithm)

简介

adam是训练神经网络中最有效的优化算法之一。它结合了momentum和RMSprop。

工作方式

  1. 计算上一个梯度的指数加权平均,存储在v中。
  2. 计算上一个梯度指数加权平均的平方,存储在s中。
  3. 使用adam的规则更新参数。

优点

  1. 通常比较节省内存(尽管还是比GD和momentum多)
  2. 即使在低学习率条件下也能运行得很好

算法

{ v d W [ l ] = β 1 v d W [ l ] + ( 1 − β 1 ) ∂ J ∂ W [ l ] v d W [ l ] c o r r e c t e d = v d W [ l ] 1 − ( β 1 ) t s d W [ l ] = β 2 s d W [ l ] + ( 1 − β 2 ) ( ∂ J ∂ W [ l ] ) 2 s d W [ l ] c o r r e c t e d = s d W [ l ] 1 − ( β 1 ) t W [ l ] = W [ l ] − α v d W [ l ] c o r r e c t e d s d W [ l ] c o r r e c t e d + ε l = 1 , . . . , L \begin{cases} v_{dW^{[l]}} = \beta_1 v_{dW^{[l]}} + (1 - \beta_1) \frac{\partial \mathcal{J} }{ \partial W^{[l]} } \\ v^{corrected}_{dW^{[l]}} = \frac{v_{dW^{[l]}}}{1 - (\beta_1)^t} \\ s_{dW^{[l]}} = \beta_2 s_{dW^{[l]}} + (1 - \beta_2) (\frac{\partial \mathcal{J} }{\partial W^{[l]} })^2 \\ s^{corrected}_{dW^{[l]}} = \frac{s_{dW^{[l]}}}{1 - (\beta_1)^t} \\ W^{[l]} = W^{[l]} - \alpha \frac{v^{corrected}_{dW^{[l]}}}{\sqrt{s^{corrected}_{dW^{[l]}}} + \varepsilon} \end{cases} \\ l = 1, ..., L vdW[l]=β1vdW[l]+(1β1)W[l]JvdW[l]corrected=1(β1)tvdW[l]sdW[l]=β2sdW[l]+(1β2)(W[l]J)2sdW[l]corrected=1(β1)tsdW[l]W[l]=W[l]αsdW[l]corrected +εvdW[l]correctedl=1,...,L
其中:

  • t是adam进行到的步数
  • L是神经网络的层数
  • 𝛽1(建议使用0.9)和 𝛽2(建议使用0.999)是控制两个指数加权平均的
  • α 是学习率
  • ε 是一个用来放置分母为0的值很小的数

学习率衰减(Learning rate decay)

做法

在不同的代(epoch)上使用递减的学习率

几种公式

α = 1 1 + d e c a y r a t e ∗ e p o c h n u m ∗ α 0 α = a e p o c h n u m ∗ α 0 α = k e p o c h n u m ∗ α 0 手动调整 α 的值 \alpha=\frac{1}{1+decayrate*epochnum}*\alpha_0 \\ \alpha=a^{epochnum}*\alpha_0 \\ \alpha=\frac{k}{\sqrt{epochnum}}*\alpha_0 \\ 手动调整\alpha的值 α=1+decayrateepochnum1α0α=aepochnumα0α=epochnum kα0手动调整α的值

局部最优问题

  1. 在神经网络规模较大、参数较多的时候,实际上很难达到局部最优点,更有可能达到的是鞍点。因此梯度下降被困在局部最优点不是很大的问题。
  2. 鞍点会减缓学习速度,而momentum、RMSprop、Adam正式可以解决这种问题

如图,我们不想要绿线,而想要蓝线。

我们需要计算一个额外变量S,S等于目前数据附近水平方向或竖直方向的dX的方差。

我们在更新数据(W、b)的时候,把原来要减掉的dX除以这个方差,那么方差大的方向变化量就减少,方差小的方向变化量就仍处于正常水平甚至增大。

Adam 优化算法(Adam optimization algorithm)

简介

adam是训练神经网络中最有效的优化算法之一。它结合了momentum和RMSprop。

工作方式

  1. 计算上一个梯度的指数加权平均,存储在v中。
  2. 计算上一个梯度指数加权平均的平方,存储在s中。
  3. 使用adam的规则更新参数。

优点

  1. 通常比较节省内存(尽管还是比GD和momentum多)
  2. 即使在低学习率条件下也能运行得很好

算法

{ v d W [ l ] = β 1 v d W [ l ] + ( 1 − β 1 ) ∂ J ∂ W [ l ] v d W [ l ] c o r r e c t e d = v d W [ l ] 1 − ( β 1 ) t s d W [ l ] = β 2 s d W [ l ] + ( 1 − β 2 ) ( ∂ J ∂ W [ l ] ) 2 s d W [ l ] c o r r e c t e d = s d W [ l ] 1 − ( β 1 ) t W [ l ] = W [ l ] − α v d W [ l ] c o r r e c t e d s d W [ l ] c o r r e c t e d + ε l = 1 , . . . , L \begin{cases} v_{dW^{[l]}} = \beta_1 v_{dW^{[l]}} + (1 - \beta_1) \frac{\partial \mathcal{J} }{ \partial W^{[l]} } \\ v^{corrected}_{dW^{[l]}} = \frac{v_{dW^{[l]}}}{1 - (\beta_1)^t} \\ s_{dW^{[l]}} = \beta_2 s_{dW^{[l]}} + (1 - \beta_2) (\frac{\partial \mathcal{J} }{\partial W^{[l]} })^2 \\ s^{corrected}_{dW^{[l]}} = \frac{s_{dW^{[l]}}}{1 - (\beta_1)^t} \\ W^{[l]} = W^{[l]} - \alpha \frac{v^{corrected}_{dW^{[l]}}}{\sqrt{s^{corrected}_{dW^{[l]}}} + \varepsilon} \end{cases} \\ l = 1, ..., L vdW[l]=β1vdW[l]+(1β1)W[l]JvdW[l]corrected=1(β1)tvdW[l]sdW[l]=β2sdW[l]+(1β2)(W[l]J)2sdW[l]corrected=1(β1)tsdW[l]W[l]=W[l]αsdW[l]corrected +εvdW[l]correctedl=1,...,L
其中:

  • t是adam进行到的步数
  • L是神经网络的层数
  • 𝛽1(建议使用0.9)和 𝛽2(建议使用0.999)是控制两个指数加权平均的
  • α 是学习率
  • ε 是一个用来放置分母为0的值很小的数

学习率衰减(Learning rate decay)

做法

在不同的代(epoch)上使用递减的学习率

几种公式

α = 1 1 + d e c a y r a t e ∗ e p o c h n u m ∗ α 0 α = a e p o c h n u m ∗ α 0 α = k e p o c h n u m ∗ α 0 手动调整 α 的值 \alpha=\frac{1}{1+decayrate*epochnum}*\alpha_0 \\ \alpha=a^{epochnum}*\alpha_0 \\ \alpha=\frac{k}{\sqrt{epochnum}}*\alpha_0 \\ 手动调整\alpha的值 α=1+decayrateepochnum1α0α=aepochnumα0α=epochnum kα0手动调整α的值

局部最优问题

  1. 在神经网络规模较大、参数较多的时候,实际上很难达到局部最优点,更有可能达到的是鞍点。因此梯度下降被困在局部最优点不是很大的问题。
  2. 鞍点会减缓学习速度,而momentum、RMSprop、Adam正式可以解决这种问题

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/176233.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024 AIGC 规划:探索交互体验变革及 智能硬件基础设施篇

TL;DR Run LLM/Embedding on Android: https://github.com/unit-mesh/android-semantic-search-kitInference SDK&#xff1a;https://github.com/unit-mesh/inference 正文&#xff1a; 在过去的一年时间里&#xff0c;国内外大中型公司都在探索、引入了 GenAI / AIGC&#xf…

Seaborn数据可视化综合应用Basemap和Seaborn在线闯关_头歌实践教学平台

Seaborn数据可视化综合应用Basemap和Seaborn 第1关 Seaborn第2关 Seaborn图形介绍第3关 Basemap 第1关 Seaborn 任务描述 本关任务&#xff1a;编写一个绘制每个月销售总额的折线图。 编程要求 本关的编程任务是补全右侧上部代码编辑区内的相应代码&#xff0c;根据输入文件路…

优选算法精品解析

1.双指针(前后/左右双指针) 1.1 283.移动零 快排双指针的核心算法 左边所有数 < tmp,右边所有数 > tmp,以tmp这个数为标准 1.2 1089.复习零 如果一对双指针从左向右不行,那么就从右向左,换一个方向 1.3 202.快乐数 双指针中的快慢指针: slow1,fast2 1.4 11.最多盛水的…

使用Java实现一个简单的贪吃蛇小游戏

一. 准备工作 首先获取贪吃蛇小游戏所需要的头部、身体、食物以及贪吃蛇标题等图片。 然后&#xff0c;创建贪吃蛇游戏的Java项目命名为snake_game&#xff0c;并在这个项目里创建一个文件夹命名为images&#xff0c;将图片素材导入文件夹。 再在src文件下创建两个包&#xff0…

CCLink转Modbus TCP网关_MODBUS网口设置

兴达易控CCLink转Modbus TCP网关是一种用于连接CCLink网络和Modbus TCP网络的设备。它提供了简单易用的MODBUS网口设置&#xff0c;可以帮助用户轻松地配置和管理网络连接 1 、网关做为MODBUS主站 &#xff08;1&#xff09;将电脑用网线连接至网关的P3网口上。 &#xff08;…

Ubuntu22.04源码安装ROS-noetic(ROS1非ROS2),编译运行VINS-MONO

1. Ubuntu22.04源码编译安装ROS-noetic 由于22.04默认安装ROS2&#xff0c;但很多仓库都是基于ROS1的&#xff0c;不想重装系统&#xff0c;参考这两个博客安装了ROS-noetic&#xff1a; 博客1. https://blog.csdn.net/Drknown/article/details/128701624博客2. https://zhua…

飞天使-django创建一个初始项目过程

创建django项目 运行项目 运行命令 pyhont manage.py runserver 然后访问 http://127.0.0.1:8000/&#xff0c; 则可以打开本地新建的项目 虚拟环境的部署-mac 在一台计算机上可以通过虚拟环境实现多个版本Django的开发环境 安装虚拟环境工具&#xff1a;如果你的系统中没有安…

Linux(命令)——结合实际场景的命令 查找Java安装位置命令

前言 在内卷的时代&#xff0c;作为开发的程序员也需要懂一些Linux相关命令。 本篇博客结合实际应用常见&#xff0c;记录Linux命令相关的使用&#xff0c;持续更新&#xff0c;希望对你有帮助。 目录 前言引出一、查找Java安装位置命令1、使用which命令2、使用find命令3、查…

算法萌新闯力扣:x的平方根

力扣热题&#xff1a;69.x的平方根 开篇 这是一道练习二分查找的题目&#xff0c;简单但也有一些细节需要注意&#xff0c;如判断条件、溢出等。 题目链接:69.x的平方根 题目描述 代码思路 1.一开始使用暴力解&#xff0c;发现超时了&#xff0c;看了标签&#xff0c;原来又…

【图论】最小生成树(python和cpp)

文章目录 一、声明二、简介三、代码C代码Python代码 一、声明 本帖持续更新中如有纰漏望指正&#xff01; 二、简介 &#xff08;a&#xff09;点云建立的k近邻图&#xff08;b&#xff09;k近邻图上建立的最小生成树 最小生成树 (Minimum Spanning Tree&#xff0c;简称 M…

2.6 Windows驱动开发:使用IO与DPC定时器

本章将继续探索驱动开发中的基础部分&#xff0c;定时器在内核中同样很常用&#xff0c;在内核中定时器可以使用两种&#xff0c;即IO定时器&#xff0c;以及DPC定时器&#xff0c;一般来说IO定时器是DDK中提供的一种&#xff0c;该定时器可以为间隔为N秒做定时&#xff0c;但如…

文章发表 | 求臻医学发布精准肿瘤学临床试验预筛选平台

近日&#xff0c;求臻医学信息与人工智能团队研发的精准肿瘤学临床试验预筛选平台OncoCTMiner&#xff0c;在线发表于国际期刊Database: The Journal of Biological Databases and Curation (IF5.8)。OncoCTMiner集成自然语言处理&#xff08;NLP&#xff09;和大型语言模型&am…