随着我们设计越来越深的网络,深刻理解“新添加的层如何提升神经网络的性能”变得至关重要。更重要的是设计网络的能力,在这种网络中,添加层会使网络更具表现力, 为了取得质的突破,我们需要一些数学基础知识。
ResNet沿用了VGG完整的\(3\times 3\)卷积层设计。 残差块里首先有2个有相同输出通道数的\(3\times 3\)卷积层。 每个卷积层后接一个批量规范化层和ReLU激活函数。 然后我们通过跨层数据通路,跳过这2个卷积运算,将输入直接加在最后的ReLU激活函数前。 这样的设计要求2个卷积层的输出与输入形状一样,从而使它们可以相加。 如果想改变通道数,就需要引入一个额外的\(1\times 1\)卷积层来将输入变换成需要的形状后再做相加运算。 残差块的实现如下:
from mxnet import np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2lnpx.set_np()class Residual(nn.Block): #@savedef __init__(self, num_channels, use_1x1conv=False, strides=1, **kwargs):super().__init__(**kwargs)self.conv1 = nn.Conv2D(num_channels, kernel_size=3, padding=1,strides=strides)self.conv2 = nn.Conv2D(num_channels, kernel_size=3, padding=1)if use_1x1conv:self.conv3 = nn.Conv2D(num_channels, kernel_size=1,strides=strides)else:self.conv3 = Noneself.bn1 = nn.BatchNorm()self.bn2 = nn.BatchNorm()def forward(self, X):Y = npx.relu(self.bn1(self.conv1(X)))Y = self.bn2(self.conv2(Y))if self.conv3:X = self.conv3(X)return npx.relu(Y + X)
此代码生成两种类型的网络: 一种是当use_1x1conv=False
时,应用ReLU非线性函数之前,将输入添加到输出。 另一种是当use_1x1conv=True
时,添加通过\(1 \times 1\)卷积调整通道和分辨率。
下面我们来查看输入和输出形状一致的情况。
blk = Residual(3,3)
X = torch.rand(4, 3, 6, 6)
Y = blk(X)
Y.shape
torch.Size([4, 3, 6, 6])
我们也可以在增加输出通道数的同时,减半输出的高和宽。
blk = Residual(3,6, use_1x1conv=True, strides=2)
blk(X).shape
torch.Size([4, 6, 3, 3])