并发编程之生产者消费者模型

什么是生产者消费者模型

生产者消费者模型是多线程中一个比较典型的模型。

打个比方:你是一个客户,你去超市里买火腿肠。

这段话中的 "你"就是消费者, 那么给超市提供火腿肠的供货商就是生产者。超市呢?超市是不是被所有人所共享?大家都可以去访问超市,所以这里的超市是一份临界资源。

所以生产者消费者有三种关系,两种角色,一个交易场所。

三种关系:

1.生产者与生产者

2.消费者与消费者

3.生产者与消费者

生产者与生产者是竞争关系,因为厂商之间互相竞争。所以生产与生产者是互斥关系。

消费者与消费者其实也是竞争关系,但是因为商品够多,而消费者消费速度太慢,所以没有明显的区别。但如果世界上只剩下最后一瓶矿泉水了,那是不是大家都会去抢呢? 所以消费者与消费者其实也是互斥关系。

生产者与消费者也是竞争关系,我们生产者和消费者看成两个线程,超市看成一份临界资源。那么这两个线程是不是都要访问这个临界资源?既然都要访问这个临界资源,那么生产和消费者也是互斥关系。但不仅仅是互斥,因为生产者把超市装满了,是不是要等待用户来消费?同理如果超市空了,消费者是不是要等待生产者来供货?所以生产和消费者还有一层关系,那就是同步

两种角色

生产者与消费者

一个交易场所

一份临界资源,生产者向临界资源提供数据,消费者从临界资源中拿数据。

有没有发现生产与消费者模型很像管道?没错,管道就是典型的生产者与消费者模型。

这是一个多生产者多消费者的模型。

在这里插入图片描述

接下来我们就来实现一个基于阻塞队列的生产者消费者模型。这里的阻塞队列冲当的就是临界资源,生产者把数据放进阻塞队列,消费者把数据从阻塞队列中拿出。

锁的封装

首先我们用RAII风格的锁。

MyLock类

#include<pthread.h> 
class MyLock{public:MyLock(pthread_mutex_t* pmtx): _pmtx(pmtx){}void Lock(){ pthread_mutex_lock(_pmtx);}void Unlock() { pthread_mutex_unlock(_pmtx);}private:pthread_mutex_t* _pmtx;};

LockGuard类

#include<pthread.h>
class LockGuard{public:LockGuard(pthread_mutex_t* pmtx):_mtx(pmtx){_mtx.Lock();}~LockGuard(){_mtx.Unlock();}private:MyLock _mtx;};

这个类的构造函数是加锁,析构函数是解锁。所以我们只需要创建一个这个类的对象的代码和临界资源的代码放在一起,就可以实现加锁和解锁了。这种方式可以避免有时候解锁忘记写了导致死锁的问题。

阻塞队列的实现

block_queue类的声明

#include<queue>
#include<pthread.h>
#include<iostream>
#include "Task.hpp"
#include "LockGuard.hpp" 
#define DEFAULT_NUM 5
template<class T> //因为不确定阻塞队列放的数据类型, 所以用模板参数class block_queue{private:size_t _num; //阻塞队列的容量std::queue<T> _blockqueue;  //阻塞队列pthread_mutex_t _mtx;  //锁pthread_cond_t _full;  //条件变量,让生产者在阻塞队列为满时进行等待pthread_cond_t _empty;  //条件变量,让消费者在阻塞队列为空时进行等待public: block_queue(size_t num = DEFAULT_NUM); //构造函数~block_queue(); // 析构//生产者生产void Push(const T& task);// 消费者消费void Pop(T* out);private://让当前线程在指定的条件变量下等待void Wait(pthread_cond_t* cond) {pthread_cond_wait(cond,&_mtx);}//唤醒指定条件变量下等待的线程void Wakeup(pthread_cond_t* cond) {pthread_cond_signal(cond);}//判断阻塞队列是否满了bool isfull() { return _blockqueue.size() == _num;}//判断阻塞队列是否为空bool isempty() { return _blockqueue.size() == 0;}};

我们的阻塞队列实际上只提供2个操作,一个是push(生产者放数据),一个是pop(消费者拿数据)。

block_queue类的实现


#define DEFAULT_NUM 5
template<class T>class block_queue{private:size_t _num;std::queue<T> _blockqueue; pthread_mutex_t _mtx; pthread_cond_t _full; pthread_cond_t _empty; public: block_queue(size_t num = DEFAULT_NUM) : _num(num){pthread_mutex_init(&_mtx,nullptr);pthread_cond_init(&_full,nullptr);pthread_cond_init(&_empty,nullptr);}~block_queue(){pthread_mutex_destroy(&_mtx);pthread_cond_destroy(&_full);pthread_cond_destroy(&_empty);}//生产者生产void Push(const T& task){LockGuard lockguard(&_mtx); //加锁,出了作用域自动解锁while(isfull()) Wait(&_full); //生产队列已满,生产者在full条件变量下等待//被唤醒后添加任务到生产队列_blockqueue.push(task);printf("%p 生产了一个任务 : %d %c %d\n",pthread_self(),task._x,task._op,task._y); //这是对任务的打印....暂且无视,等Task类实现完后看结果的Wakeup(&_empty); //唤醒消费者}// 消费者消费void Pop(T* out){LockGuard lockguard(&_mtx) ;//加锁,出了作用域自动解锁while(isempty()) Wait(&_empty); //生产队列已空,消费者进入等待 //被唤醒后添加任务到生产队列*out = _blockqueue.front(); //提取任务_blockqueue.pop(); //队列popWakeup(&_full);}private:void Wait(pthread_cond_t* cond) {pthread_cond_wait(cond,&_mtx);}void Wakeup(pthread_cond_t* cond) {pthread_cond_signal(cond);}bool isfull() { return _blockqueue.size() == _num;}bool isempty() { return _blockqueue.size() == 0;}};

Task类实现

我们可以往阻塞队列里面放数据,当然也可以往里面放一个任务。这里我们就创建一个加减乘除取模运算的任务类。

#include <iostream>class Task{public:Task(){}Task(int x, char op,int y):_x(x),_op(op),_y(y),_iserror(false){}void Runing(){int ret = 0;switch(_op){case '+' : ret = _x + _y; break; case '-' : ret = _x - _y; break;case '*' : ret = _x * _y; break;case '/' :{ if(_y) ret = _x / _y;else _iserror = true;break;}case '%' :{ if(_y) ret = _x % _y;else _iserror = true;break;}default: _iserror = true; }if(_iserror) std::cout << "result error" << std::endl;  //如果结果错误打印错误else std::cout << _x << _op << _y << "=" << ret << std::endl; //如果结果正确打印完整式子}public:int _x; //第一个操作数char _op; //操作符int _y; //第二个操作数bool _iserror; //结果是否错误};

Main

`

#include "BlockQueue.hpp"
#include <time.h>
#include<unistd.h>
#include<string>#define CONNUM 5 
#define PRODNUM 2//生产者放任务
void* ProcuderRuning(void* args)
{wyl::block_queue<wyl::Task>* bq = (wyl::block_queue<wyl::Task>*)args;while(1){int x = rand() % 10 + 1;int y =  rand()%20;char op = "+-*/%"[rand() % 5];bq->Push(wyl::Task(x,op,y)); //往阻塞队列中放任务}
}//消费不断拿任务
void* ConsumerRuning(void* args)
{wyl::block_queue<wyl::Task>* bq = (wyl::block_queue<wyl::Task>*)args;while(1){wyl::Task t; bq->Pop(&t); //从阻塞队列中拿任务printf("%p 消费了一个任务",pthread_self());t.Runing(); //处理任务sleep(1); //让消费者不要频繁消费太快,这样阻塞队列满了会等待消费者}
}int main()
{pthread_t con[CONNUM]; pthread_t prod[PRODNUM]; srand((unsigned int)0); //随机数种子//创造等待队列wyl::block_queue<wyl::Task>* bq = new wyl::block_queue<wyl::Task>(5);//创建生产者线程for(int i = 0 ; i < PRODNUM ; i++){std::string name = "prodcuer ";name += std::to_string(i+1); pthread_create(prod + i,nullptr,ProcuderRuning,(void*)bq);}//创建消费者线程for(int i = 0 ; i < CONNUM ; i++){std::string name = "consumer ";name += std::to_string(i+1); pthread_create(con + i,nullptr,ConsumerRuning,(void*)bq);}//等待线程for(int i = 0 ; i < PRODNUM ; i++){pthread_join(prod[i],nullptr);}for(int i = 0 ; i < CONNUM ; i++){pthread_join(con[i],nullptr);}return 0;
}

`

消费者慢消费,生产者快生产的执行结果:

在这里插入图片描述

生产者慢生产,消费者快消费的运行结果:

在这里插入图片描述

我们会发现,任务井然有序的执行。生产者放了数据后通知消费拿,消费者把数据拿完又会通知生产者放。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/178617.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CMT2300A超低功耗127-1020MHz Sub-1GHz全频段SUB-1G 射频收发芯片

CMT2300A超低功耗127-1020MHz Sub-1GHz全频段SUB-1G 射频收发芯片 Sub-1GHz&#xff0c;是指小于1GHz频率的统称。Sub-1GHz无线电频段应用的主要特点&#xff1a;&#xff08;1&#xff09;频率较低波长较长&#xff0c;传输距离远&#xff0c;穿透性强&#xff1b;&#xff0…

Python数据结构:字典(dict)详解

1.字典概念 字典在其他语言中可能会被称为“关联存储”或“关联数组”。   在Python中&#xff0c;字典&#xff08;Dictionary&#xff09;是一种可变、无序且键值对&#xff08;key-value pairs&#xff09;唯一的数据结构。   字典也是一种标准映射类型&#xff0c;mapp…

彩虹桥架构演进之路-性能篇

一、前言 一年前的《彩虹桥架构演进之路》侧重探讨了稳定性和功能性两个方向。在过去一年中&#xff0c;尽管业务需求不断增长且流量激增了数倍&#xff0c;彩虹桥仍保持着零故障的一个状态&#xff0c;算是不错的阶段性成果。而这次的架构演进&#xff0c;主要分享一下近期针对…

9步打造个人ip

什么是个人IP&#xff1f; 就是一个人创造出来的属于自己的有个性有价值的&#xff0c;能让他人记住你&#xff0c;信任你&#xff0c;认可你的东西。 如何强化个人IP呢&#xff1f; 需要一些必要的条件如专业性、耐心、勤奋等等要知道&#xff0c;打造IP是一个见效慢的过程&am…

零代码数字孪生设计平台的功能特点

在当今数字化的时代&#xff0c;企业的转型已经成为必然的趋势。而在这个过程中&#xff0c;3D数字孪生无代码编辑工具正成为企业实现数字化转型的新价值点。客户可以无需任何专业知识和专业软件的支持&#xff0c;仅仅通过互联网和浏览器即可根据购买要求对自己的产品/设备/园…

Ubuntu18.04平台下Qt开发程序打包的一些问题总结

目录 前言 一、在Ubuntu18.04开发环境下打包有两种方式 1、利用linuxdeployqt软件进行打包 2、利用编写shell脚本的方式进行打包 二、详细介绍shell脚本打包的方式 1、新建一个空的文件夹 2、准备脚本copylib.sh 3、准备脚本xxxx.sh。 4、给上述两个脚本添加可执行权限…

单相过压继电器DVR-G-100-1 0~500V AC/DC220V 导轨安装

系列型号 DVR-G-100-1X3数字式过压继电器&#xff1b; DVR-G-100-3三相过压继电器&#xff1b; DVR(H)-G-100-1单相过压继电器&#xff1b; DVR-Q-100-3三相欠压继电器&#xff1b; DVR(H)-Q-100-3三相欠压继电器 一、用途 主要应用于电机、变压器等主设备以及输配电系统的继…

全数字系列-麦克风K歌模组-搭配投影仪专业方案

麦克风学名传声器&#xff0c;是将声音信号转换为电信号的能量转换器件&#xff0c;也称话筒、微音器&#xff1b;主要包括拾音面和信号放大电路&#xff1b;利用微机械加工技术制作出来的电能换声器&#xff0c;具有体积小、频响特性好、噪声低、高集成度和适于大批量生产的特…

使用naive-ui做一个标签页展示列表

目录 零、引言 一、引入所需组件 二、引入数据 三、使用动态样式控制列表条纹 四、全部代码 五、设计思路 5.1组件设计思路 5.2背景颜色控制思路 5.3说明 六。最终效果 零、引言 有时候我们会有很多数据&#xff0c;分成好几类 每一类都需要展示&#xff0c;那么这时…

vue3 tsx 项目中使用 Antv/G2 实现多线折线图

Antv/G2 文档 Antv/G2 双折线图 安装依赖 项目中安装 antv/g2 依赖库&#xff1a; npm install antv/g2 --save安装成功&#xff1a; 项目使用 新建文件 IndicatorTrend.tsx&#xff1a; import { defineComponent, PropType, onMounted, ref } from vue import { useCh…

全网最全指南:什么是产品手册?又该如何编写呢?

如果你想提高对用户的支持&#xff0c;优先制作产品的产品手册至关重要。事实上&#xff0c;如果用户不知道如何使用你的产品&#xff0c;他们很可能会失去兴趣。用户通常在向客户寻求帮助之前会参考产品手册&#xff0c;因此你的手册是一个宝贵的资源&#xff0c;可以帮助降低…

算法通关村——归并排序

归并排序 1、归并排序原理 ​ 归并排序是一种很经典的分治策略。 ​ 归并排序(MERGE-SORT)简单来说就是将大的序列先视为若干小的数组&#xff0c;分成几个比较小的结构&#xff0c;然后是利用归并的思想实现的排序方法。将一个大的问题分解成一些小的问题分别求解&#xff…