2023亚太杯数学建模思路 - 复盘:光照强度计算的优化模型

文章目录

  • 0 赛题思路
    • 1 问题要求
    • 2 假设约定
    • 3 符号约定
    • 4 建立模型
    • 5 模型求解
    • 6 实现代码
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 问题要求

现在已知一个教室长为15米,宽为12米,在距离地面高2.5米的位置均
匀的安放4个光源(分别为1、2、3、4),各个光源的光照强度均为一个单位,如下图
在这里插入图片描述
要求:

  • (1)如何计算教室内任意一点的光照强度?(光源对目标点的光照强度与该光源到目标点距离的平方成反比,与该光源的强度成正比).
  • (2)画出距离地面1米处各个点的光照强度与位置(横纵坐标)之间的函数关系曲面图,试同时给出一个近似的函数关系式.
  • (3)假设离地面1米高正是学生桌面的高度,如何设计这四个点光源的位置,才能使学生对光照的平均满意度达到最高?
  • (4)若将题目中的点光源换成线光源,以上(2)、(3)问的结果又如何?

(对于(1)、(2)问,假设横向(纵向)墙壁与光源、光源与光源、光源与墙壁之间的距离是相等的.)

2 假设约定

  • 1 光不会通过窗、门等外涉,也不考虑光在空气中的消耗,即光照强度和不变;
  • 2 室内不受外界光源影响;
  • 3 教室高度为2.5米;
  • 4 不考虑光的反射;
  • 5 线光源发光是均匀的.

3 符号约定

在这里插入图片描述

4 建立模型

在这里插入图片描述
在这里插入图片描述

5 模型求解

在这里插入图片描述
在这里插入图片描述

6 实现代码

matlab 实现代码
建议最好用python去实现,图会好看一些,而且国内当前趋势会逐渐淘汰matlab,目前有些学校已经无法使用matlab了

clear
clc
max=0;min=4;
for i=0:0.1:3for j=0.1:0.1:4s=0;x1=8+i,y1=5-jx2=8+i,y2=10+jx3=4-i,y3=10+jx4=4-i,y4=5-j     for x=0:0.1:12for y=0:0.1:15for z=0:0.1:2.5if x1~=x & y1~=y & x2~=x & y2~=y & x3~=x & y3~=y & x4~=x & y4~=y s=s+1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2);endendendendk=4./s;l=0;z=1;for x=0:0.1:12for y=0:0.1:15l=l+k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));endendif l>maxmax=l;x11=x1;y11=y1;x12=x2;y12=y2;x13=x3;y13=y3;x14=x4;y14=y4;endp=l./(120.*150);Q=0;for x=0:0.1:12for y=0:0.1:15Q=Q+(k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2))-p).^2.^(1./2);endendif min>Qmin=Q;x21=x1;y21=y1;x22=x2;y22=y2;x23=x3;y23=y3;x24=x4;y24=y4;endend
end
disp(['最大值','x11=',num2str(x11),'  ','y11=',num2str(y11),'  ','x12=',num2str(x12),'  ','y12=',num2str(y12),'  ','x13=',num2str(x13),'  ','y13=',num2str(y13),'  ','x14=',num2str(x14),'  ','y14=',num2str(y14)])
disp(['最平均','x21=',num2str(x21),'  ','y21=',num2str(y21),'  ','x22=',num2str(x22),'  ','y22=',num2str(y22),'  ','x23=',num2str(x23),'  ','y23=',num2str(y23),'  ','x24=',num2str(x24),'  ','y24=',num2str(y24)])
附录二:
clear
clc
max=0;min=4;li=4;
for i=0:0.1:3for j=0.1:0.1:4s=0;x1=8+i,y1=5-jx2=8+i,y2=10+jx3=4-i,y3=10+jx4=4-i,y4=5-j     for x=0:0.1:12for y=0:0.1:15for z=0:0.1:2.5if x1~=x & y1~=y & x2~=x & y2~=y & x3~=x & y3~=y & x4~=x & y4~=y s=s+1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2);endendendendk=4./s;l=0;z=1;e=0for x=0:0.1:12for y=0:0.1:15l=l+k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));r=k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));e=e+(r-6*10^(-32))^2;endendS=(l-0.1278)^2+eif S<lili=Sx11=x1,y11=y1,  x12=x2,y12=y2,  x13=x3,y13=y3,  x14=x4,y14=y4,en4en4
en4
disp(['x11=',num2str(x11),'  ','y11=',num2str(y11),'  ','x12=',num2str(x12),'  ','y12=',num2str(y12),'  ','x13=',num2str(x13),'  ','y13=',num2str(y13),'  ','x14=',num2str(x14),'  ','y14=',num2str(y14)])
li

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/178879.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一文解释对比学习

对比学习是一种无监督学习技术&#xff0c;其核心思想是通过比较不同样本之间的相似性和差异性来学习数据的表示&#xff08;features&#xff09;。它不依赖于标签数据&#xff0c;而是通过样本之间的相互关系&#xff0c;使得模型能够学习到有意义的特征表示。 在对比学习中…

【ML】欠拟合和过拟合的一些判别和优化方法(吴恩达机器学习笔记)

吴恩达老师的机器学习教程笔记 减少误差的一些方法 获得更多的训练实例——解决高方差尝试减少特征的数量——解决高方差尝试获得更多的特征——解决高偏差尝试增加多项式特征——解决高偏差尝试减少正则化程度 λ——解决高偏差尝试增加正则化程度 λ——解决高方差 什么是…

接口测试 —— Jmeter 之测试片段的应用

一、什么是测试片段&#xff1f; 控制器上一种特殊的线程组&#xff0c;它与线程组处于一个层级。与线程组不同的就是&#xff1a;测试片段不会执行。它是一个模块控制器或者被控制器应用时才会被执行。通常与Include Controller或模块控制器一起使用。 1.1 那它有啥作用&…

前端跨界面之间的通信解决方案

主要是这两个方案&#xff0c;其他的&#xff0c;还有 SharedWorker 、IndexedDB、WebSocket、Service Worker 如果是&#xff0c;父子嵌套 iframe 还可以使用 window.parent.postMessage(“需要传递的参数”, ‘*’) 1、localStorage 核心点 同源&#xff0c;不能跨域(协议、端…

在docker下安装suiteCRM

安装方法&#xff1a; docker-hub来源&#xff1a;https://hub.docker.com/r/bitnami/suitecrm curl -sSL https://raw.githubusercontent.com/bitnami/containers/main/bitnami/suitecrm/docker-compose.yml > docker-compose.yml//然后可以在docker-compose.yml文件里修…

Mysql词法分析实验(二)

表名叫select123能不能创建一个表&#xff1f; 在 MySQL 中&#xff0c;可以创建一个名为 select123 的表&#xff0c;但由于 SELECT 是 MySQL 的一个保留关键字&#xff0c;通常建议避免使用它作为表名的一部分&#xff0c;以防止潜在的解析错误或混淆。如果确实需要使用这样…

缓存穿透、缓存击穿、缓存雪崩

目录 一、缓存的概念 1.为什么需要把用户的权限放入redis缓存 2.为什么减低了数据库的压力呢&#xff1f; 3.那么什么情况下用redis,什么情况下用mysql呢&#xff1f; 4.关于权限存入redis的逻辑&#xff1f; 二、使用缓存出现的三大情况 1.缓存穿透 1.1概念 1.2出现原…

五年制专转本备考中如何进行有效的自我管理

时间管理 0 1 一天中的4个记忆黄金时间 清晨起床后&#xff0c;适合学习难以记忆的内容&#xff1b;8&#xff1a;00—10&#xff1a;00&#xff0c;适宜学习需要周密思考、分析判断的内容&#xff0c;是攻克难题的最佳时间&#xff1b;18&#xff1a;00后的两个小时&#x…

MXNet中图解稀疏矩阵(Sparse Matrix)的压缩与还原

1、概述 对于稀疏矩阵的解释&#xff0c;就是当矩阵里面零元素远远多于非零元素&#xff0c;且非零元素没有规律&#xff0c;这样的矩阵就叫做稀疏矩阵&#xff0c;反过来就是稠密矩阵&#xff0c;其中非零元素的数量与所有元素的比值叫做稠密度&#xff0c;一般稠密度小于0.0…

今年跳槽成功测试工程师原来是掌握了这3个“潜规则”

随着金九银十逐渐进入尾声&#xff0c;还在观望机会的朋友们已经开始焦躁&#xff1a;“为什么我投的简历还没有回音&#xff1f;要不要趁现在裸辞好好找工作&#xff1f;” “金九银十”作为人们常说的传统“升职加薪”的黄金季节&#xff0c;也是许多人跳槽的理想时机。然而…

云原生下GIS服务规划与设计

作者&#xff1a;lisong 目录 背景云原生环境下GIS服务的相关概念GIS服务在云原生环境下的规划调度策略GIS服务在云原生环境下的调度手段GIS服务在云原生环境下的服务规划调度实践 背景 作为云原生GIS系统管理人员&#xff0c;在面对新建的云GIS系统时&#xff0c;通常需要应对…

【Rust】快速教程——从hola,mundo到所有权

前言 学习rust的前提如下&#xff1a; &#xff08;1&#xff09;先把Rust环境装好 &#xff08;2&#xff09;把VScode中关于Rust的插件装好 \;\\\;\\\; 目录 前言先写一个程序看看Rust的基础mut可变变量let重定义覆盖变量基本数据类型复合类型&#xff08;&#xff09;和 [ …