EfficientNet:通过模型效率彻底改变深度学习

一、介绍

        EfficientNet 是深度学习领域的里程碑,代表了神经网络架构方法的范式转变。EfficientNet 由 Google Research 的 Mingxing Tan 和 Quoc V. Le 开发,在不影响性能的情况下满足了对计算高效模型不断增长的需求。本文深入探讨了 EfficientNet 背后的关键原理、其架构以及它对深度学习领域的影响。

EfficientNet:开创了模型效率时代,计算能力与优雅相结合,通过节省足迹将性能提升到新的高度,彻底改变深度学习。

二、背景

        多年来,随着深度学习模型规模的增加,与训练和部署这些模型相关的计算成本也随之增加。计算需求的激增给资源利用、能源消耗以及处理能力有限的设备上的部署带来了重大挑战。为了应对这些挑战,EfficientNet 作为实现最佳模型效率的开创性解决方案应运而生。

三、EfficientNet核心原理

        EfficientNet 通过一种新颖的复合缩放方法来实现其效率,其中模型的深度、宽度和分辨率同时缩放。这种方法可确保模型在不同维度上变得更加高效,而不会牺牲性能。主要原则可概括如下:

  1. 复合缩放:EfficientNet 引入了一种复合缩放方法,可以统一缩放网络的深度、宽度和分辨率。这种方法可以实现资源的平衡分配,确保模型在各个计算方面都高效。通过联合优化这三个维度,EfficientNet 实现了比传统缩放方法更优越的性能。
  2. 神经架构搜索(NAS):EfficientNet的架构不仅仅是手工设计的结果,还涉及到神经架构搜索的使用。这个自动化过程探索可能架构的巨大搜索空间,以发现最有效的组合。NAS 有助于模型对不同任务和数据集的适应性。

四、构筑 

        EfficientNet 的特点是称为 EfficientNet-B0 的基线架构。随后的模型(表示为 EfficientNet-B1 至 EfficientNet-B7)代表了基线的放大版本。系统地增加深度、宽度和分辨率,以保持效率,同时增强模型的容量。该架构包括反向瓶颈模块、挤压和激励模块以及其他优化技术,以进一步提高性能。

五、对深度学习的影响

        EfficientNet 极大地影响了深度学习的格局,为资源受限的场景提供了一种不妥协的解决方案。它的影响可以在各个领域观察到:

  1. 资源效率: EfficientNet 为在计算资源有限的边缘设备上部署最先进的模型打开了大门,使得在资源效率至关重要的场景中可以进行深度学习。
  2. 迁移学习: EfficientNet 的效率使其成为迁移学习任务的热门选择。大型数据集上的预训练模型可以针对特定应用进行微调,从而在下游任务中实现更快的收敛和更好的性能。
  3. 可扩展性: EfficientNet 引入的复合扩展原理启发了其他领域高效模型的开发,促进了可扩展和高效神经网络架构的更广泛趋势。

六、代码

        为 EfficientNet 创建完整的 Python 代码(包括数据集处理和绘图)将会非常广泛,并且可能会根据您想要的特定用例或数据集而有所不同。不过,我可以为您提供一个使用 TensorFlow 和 Keras 执行 CIFAR-10 数据集分类任务的简化示例。

       请确保您已安装 TensorFlow:

pip install tensorflow
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.utils import to_categorical
import matplotlib.pyplot as plt# Load and preprocess the CIFAR-10 dataset
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0  # Normalize pixel values to between 0 and 1
y_train, y_test = to_categorical(y_train), to_categorical(y_test)# Define EfficientNet model using TensorFlow and Keras
def build_efficientnet():base_model = tf.keras.applications.EfficientNetB0(include_top=False, input_shape=(32, 32, 3), weights='imagenet')model = models.Sequential()model.add(base_model)model.add(layers.GlobalAveragePooling2D())model.add(layers.Dense(10, activation='softmax'))  # 10 classes for CIFAR-10return model# Compile the model
model = build_efficientnet()
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])# Train the model
history = model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))# Plot training history
def plot_history(history):plt.plot(history.history['accuracy'], label='accuracy')plt.plot(history.history['val_accuracy'], label = 'val_accuracy')plt.xlabel('Epoch')plt.ylabel('Accuracy')plt.ylim([0, 1])plt.legend(loc='lower right')plt.show()plot_history(history)
Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
170498071/170498071 [==============================] - 4s 0us/step
Downloading data from https://storage.googleapis.com/keras-applications/efficientnetb0_notop.h5
16705208/16705208 [==============================] - 0s 0us/step
Epoch 1/10
1563/1563 [==============================] - 504s 292ms/step - loss: 1.3704 - accuracy: 0.5261 - val_loss: 2.4905 - val_accuracy: 0.1014
Epoch 2/10
1563/1563 [==============================] - 420s 269ms/step - loss: 0.9050 - accuracy: 0.6939 - val_loss: 3.1378 - val_accuracy: 0.1823
Epoch 3/10
1563/1563 [==============================] - 417s 267ms/step - loss: 0.7452 - accuracy: 0.7534 - val_loss: 2.6976 - val_accuracy: 0.2337
Epoch 4/10
1563/1563 [==============================] - 423s 271ms/step - loss: 0.6388 - accuracy: 0.7845 - val_loss: 2.8459 - val_accuracy: 0.1197
Epoch 5/10
1563/1563 [==============================] - 423s 271ms/step - loss: 0.5644 - accuracy: 0.8112 - val_loss: 3.8598 - val_accuracy: 0.1005
Epoch 6/10
1563/1563 [==============================] - 418s 268ms/step - loss: 0.5156 - accuracy: 0.8244 - val_loss: 2.8828 - val_accuracy: 0.1068
Epoch 7/10
1563/1563 [==============================] - 420s 268ms/step - loss: 0.4453 - accuracy: 0.8498 - val_loss: 3.7792 - val_accuracy: 0.0870
Epoch 8/10
1563/1563 [==============================] - 425s 272ms/step - loss: 0.4123 - accuracy: 0.8608 - val_loss: 3.6623 - val_accuracy: 0.1248
Epoch 9/10
1563/1563 [==============================] - 424s 271ms/step - loss: 0.3715 - accuracy: 0.8746 - val_loss: 4.8576 - val_accuracy: 0.1023
Epoch 10/10
1563/1563 [==============================] - 426s 273ms/step - loss: 0.3379 - accuracy: 0.8853 - val_loss: 4.7601 - val_accuracy: 0.1156

        注意:这是一个简化的示例,在实际场景中,您可能需要根据您的具体要求调整代码,例如处理数据增强、微调等。此外,请确保安装任何所需的库并根据您的数据集和任务调整代码。

七、结论

        EfficientNet 证明了深度学习模型不断进化以提高效率。通过解决计算成本和资源利用的挑战,EfficientNet 已成为开发模型的基石,这些模型不仅功能强大,而且适用于广泛的应用。它对该领域的影响引发了对高效神经网络架构的进一步研究,为深度学习更可持续和更容易的未来铺平了道路。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/180221.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SystemVerilog学习 (6)——验证平台

一、概述 测试平台(Testbench)是整个验证系统的总称。它包含了验证系统的各个组件、组件之间的互联关系,测试平台的配置与控制等, 从更系统的意义来讲,它还包括编译仿真的流程、结果分析报告和覆盖率检查等。 从狭义上…

微信小程序渲染的富文本里面除了img标签外什么都没有,该如何设置img的大小

微信小程序富文本渲染&#xff1a; <rich-text nodes"{{content}}"style"{{style}}" ></rich-text> content是接口得到的值 let cont object.contentlet a cont.replace(/<img/gi,<img style"max-width:94%;height:auto;margi…

S-Clustr(影子集群) 重磅更新!黑入工业PLC设备!

公告 项目地址:https://github.com/MartinxMax/S-Clustr 更新预告内容进度SIEMENS S7-200 SMART远程控制进行中 开发人员Blog联系方式提交时间提交内容授权情况ASH_HHhttps://blog.csdn.net/m0_53711047/article/details/133691537?spm1001.2014.3001.5502匿名2023-10-16 2…

【Java】详解多线程同步的三种方式

&#x1f33a;个人主页&#xff1a;Dawn黎明开始 &#x1f380;系列专栏&#xff1a;Java ⭐每日一句&#xff1a;等风来&#xff0c;不如追风去 &#x1f4e2;欢迎大家&#xff1a;关注&#x1f50d;点赞&#x1f44d;评论&#x1f4dd;收藏⭐️ 文章目录 一.&#x1f510;线…

总结1057

考研倒计38天 极限冲刺day1 今日共计学习13h33m&#xff0c;为了能走出备考的低谷阶段&#xff0c;来一场与自我的较量。在尽可能保证效率的情况下&#xff0c;玩命干。考研这件事&#xff0c;从来不是因为看到了希望才去努力&#xff0c;而是玩命努力后才看到希望。

重生之我是一名程序员 31

大家晚上好&#xff01;前面给大家分享了指针与数组的知识&#xff0c;所以今天要给大家分享的知识是——指针数组 相信大家在这里都会有疑问&#xff0c;指针数组是指针还是数组&#xff1f; 在这我们可以类⽐⼀下其他类型的数组&#xff0c;比如整型数组是存放整型的数组&am…

Postman的Cookie鉴权

近期在复习Postman的基础知识&#xff0c;在小破站上跟着百里老师系统复习了一遍&#xff0c;也做了一些笔记&#xff0c;希望可以给大家一点点启发。 一&#xff09;什么是Cookie 定义&#xff1a;存储在客户端的一小段文本信息&#xff0c;格式为键值对的形式. 二&#xff09…

单片机实验(一)

前言 实验一&#xff1a;用单片机控制多只数码管(屏)分别左、右滚动显示自己完整的学号&#xff1b; 实验二&#xff1a;用单片机控制LED1616点阵交替正序、逆序显示自己的中文姓名。 参考链接&#xff1a; LED数码管的静态显示与动态显示&#xff08;KeilProteus&#xff0…

【C语言 | 数组】C语言数组详解(经典,超详细)

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…

【LeetCode:307. 区域和检索 - 数组可修改 | 树状数组 or 线段树】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

保姆级教程之SABO-VMD-CNN-SVM的分类诊断,特征可视化

今天出一期基于SABO-VMD-CNN-SVM的分类诊断。 依旧是采用经典的西储大学轴承数据。基本流程如下&#xff1a; 首先是以最小包络熵为适应度函数&#xff0c;采用SABO优化VMD的两个参数。其次对每种状态的数据进行特征向量的求取&#xff0c;并为每组数据打上标签。然后将数据送入…

VN5620以太网测试——DoIP配置

文章目录 前言一、DoIP简介二、Vector Hardware Configuration三、Diagnostics/ISO TP Configuration四、Diagnostic Console五、添加Ethernet Packet Builder前言 CANoe(CAN open environment)VN5620 :是一个紧凑而强大的接口,用于以太网网络的分析、仿真、测试和验证。 V…