STM32_SPI总线驱动OLED详细原理讲解

目录

这里写目录标题

  • 第13章 Cortex-M4-SPI总线
    • 13.1 SPI总线概述
      • 13.1.1 SPI总线介绍
      • 13.1.2 SPI总线接口与物理拓扑结构
      • 13.1.3 SPI总线通信原理
      • 13.1.4 SPI总线数据格式
    • 13.2 IO口模拟SPI操作OLED
      • 13.2.1 常见的显示设备
      • 13.2.2 OLED显示屏概述
      • 13.2.3 OLED特征
      • 13.2.4 显示原理
      • 13.2.5 管脚介绍
      • 13.2.6 OLED驱动
        • 13.2.6.1 驱动时序
      • 13.2.7 操作指令
        • 13.2.7.1 设置列地址(Y坐标)
        • 13.2.7.2 页地址
      • 13.2.8 OLED初始化
    • 13.3 OLED显示方式说明
    • 13.4 显示代码的编程流程
    • 13.5 显示文字
      • 13.5.1 程序设计流程
      • 13.5.2 取模方法
    • 13.6 显示图片
      • 13.6.1 程序设计流程
      • 13.6.2 取模方法
    • 13.7 STM32的SPI控制器操作OLED
      • 13.7.1 STM32的SPI总线介绍
        • 13.7.1.1 SPI控制器特征
      • 13.7.2 STM32的SPI控制器框架(重点)
      • 13.7.3 STM32的SPI相关寄存器
      • 13.7.4 SPI控制器使用
      • 13.7.3 STM32的SPI相关寄存器
      • 13.7.4 SPI控制器使用

第13章 Cortex-M4-SPI总线

13.1 SPI总线概述

13.1.1 SPI总线介绍

SPI(Serial Peripheral interface):是由Motorola公司开发的串行外围设备接口,是一种高速的,全双工,同步的通信总线。主要应用在 EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器等器件。

UART:异步串行全双工

SPI:同步串行全双工

13.1.2 SPI总线接口与物理拓扑结构

(1)五线制接口(4线SPI)—4-wire-spi

MOSI(单向数据线)、MISO(单向数据线)、CLK(时钟线)、NSS/CS(片选)

img

(2)四线制接口(3线SPI)

SDA(双向数据线)、CLK(时钟线)、NSS/CS(片选)

img

(3) 拓扑图

img

在SPI总线上,有主机(MCU)和从机(外围器件)之分,主机只有一个,从机可以有多个。

主机通过从机的片选信号线来选中从机与其进行通信。同一时间只能选择其中一个从机。随着SPI总线上挂接的从机增多,主机的片选IO也响应会增多。

M:master O:output S:slaver I:Input

MOSI(单向数据线):主出从入,主机通过这跟数据线发送数据给从机。

MISO(单向数据线):主入从出,从机通过这跟数据线发送数据给主机。

SCK(单向):时钟线,控制数据线什么时候才能传输数据。只有主机才能控制时钟线。

只有主机才能主动寻求从机与其通信,从机永远不可能主动跟主机通信。

CS:片选信号线,主机通过片选信号线来选中从机与其通信。

13.1.3 SPI总线通信原理

主机片选从机

主机通过时钟线决定什么时候发送数据给从机

主机通过时钟线决定什么时候接受从机的数据

主机取消片选

补充:

img

img

平行线:数据不允许发生改变,必须稳定发送

交叉线:数据允许发生改变,但不一定要变

13.1.4 SPI总线数据格式

SPI数据格式有4种:MODE0~3

决定数据格式的因素:时钟线哪一种跳边沿发送数据,前沿还是后沿接受数据,总线的空闲电平状态

img

img

CPHA:时钟相位。当CPHA=0,在第一个跳变沿(前沿)采集数据;当CPHA=1,在第二个跳边沿(后沿)采集数据。CPHA决定是前沿还是后沿采集数据和输出数据。

CPOL:时钟极性。当CPOL=0,总线空闲电平为低电平;当CPOL=1,总线的空闲电平为高电平。间接决定了哪一种跳边沿采集数据和发送数据。

img

如果一个设备支持MODE0,同时也会支持MODE3 (CPHA为0)

如果一个设备支持MODE1,同时也会支持MODE2

MODE0:

img

下降沿发送数据,上升沿采集数据

当SCK产生下降沿时,主机在MOSI上发送数据,同时从机在MISO上发送数据

等数据稳定在数据线上

当SCK产生上升沿时,主机在MISO上采集数据,同时从机在MOSI上采集数据

主机发送一位数据给从机:

SCK=0;//主机准备数据

MOSI=0/1;

SCK=1;//从机采集数据

主机接收一位数据给从机:

SCK=0;//从机准备数据

SCK=1;//主机采集数据.

读取MISO

主机和从机通信起始就是数据交换:

img

主机发送一个字节数据给从机//void SPI_Send_Byte(uint8_t data) //data = 1100 0000//{// uint8_t i;// for(i=0;i<8;i++)// {// SPI_SCK_L;//主机准备数据// if(data&0x80) // 1100 0000 & 1000 0000 // ((A=0)&&(B=1))// SPI_MOSI_H;// else// SPI_MOSI_L; // // data<<=1;//让次高位变成最高位 // data=data<<1;// // SPI_SCK_H;//从机采集数据// }//} 主机读取一个字节数据//uint8_t SPI_Revice_Byte(void)//{// uint8_t i;// uint8_t data=0; // for(i=0;i<8;i++)// {// SPI_SCK_L;//从机准备数据 // SPI_SCK_H;//主机采集数据// data <<=1;//空出最低位保存读取的数据// if(SPI_MISO)// data |=1;// }// // return data;//} //函数功能:SPI主机从机传输数据//参数说明:主机待发送的数据//返回值:主机接到到的数据uint8_t SPI_Exchange_Byte(uint8_t data){ uint8_t i; for(i=0;i<8;i++) { SPI_SCK_L;//主机准备数据/从机准备数据 if(data&0x80)SPI_MOSI_H; else SPI_MOSI_L; data<<=1;//让次高位变成最高位/空出最低位保存读取的数据 SPI_SCK_H;//从机采集数据/主机采集数据 if(SPI_MISO) data |=1; } return data;}只写:SPI_Exchange_Byte(data);只读:data=SPI_Exchange_Byte(0xFF);//发什么不重要

13.2 IO口模拟SPI操作OLED

OLED_CS(CS)—PB7----MCU发出----普通功能推挽输出

OLED_SCLK(SCK)—PB13–MCU发出----普通功能推挽输出

OLED_DIN(MOSI)—PB15—MCU发出----普通功能推挽输出

MISO–这里不需要

13.2.1 常见的显示设备

LED、数码管、点阵、LCD屏、OLED屏(消费电子)

13.2.2 OLED显示屏概述

OLED,即有机发光二极管(Organic Light-Emitting Diode),又称为有机电激光显示(Organic Electroluminesence Display, OELD)。因为具备轻薄、省电等特性,因此从2003 年开始,这种显示设备在 MP3 播放器上得到了广泛应用,而对于同属数码类产品的 DC与手机,此前只是在一些展会上展示过采用 OLED 屏幕的工程样品。自 2007 年后,寿命得到很大提高,具备了许多 LCD 不可比拟的优势。

补充:

像素点:构成是一幅完整画面的最小单元

分辨率:一幅完整画面横向像素点的个数乘以纵向像素点的个数

帧:一幅完整画面就为一帧。

色深:表示一个像素点颜色数据的位数。16bpp,24bpp,32bpp

13.2.3 OLED特征

分辨率:128*64

尺寸:1.3寸

13.2.4 显示原理

主要目的:让OLED显示东西

显示内容从哪里来?MCU

MCU如何发显示数据给OLED?

\1. 相关管脚接线

\2. 遵循一定的通信协议—SPI

一般要让显示设备显示出内容,都需要显示屏的驱动芯片。

在STM32上,一般都是没有集成显示屏驱动芯片,那么显示模块本身就要具备自己的驱动芯片

img

13.2.5 管脚介绍

img

通信模式选择

img

img

img

OLED_CS:片选管脚,低电平有效

OLED_RES:复位管脚,低电平有效

OLED_D/C:数据命令选择管脚。当OLED_D/C=0,输入的数据是作为命令;当OLED_D/C=1,输入的数 据是作为显示数据

OLED_SDIN:串行数据输入管脚

OLED_SCLK:串行时钟线

OLED_CS、OLED_RES、OLED_D/C是控制管脚

OLED_SDIN、OLED_SCLK是数据管脚

13.2.6 OLED驱动

13.2.6.1 驱动时序

img

跟SPI的MODE0/3一样

13.2.7 操作指令

13.2.7.1 设置列地址(Y坐标)

img

设定列地址为column(A7~A0)

高4位列地址命令:0001A7A6A5A4—00010000| A7A6A5A4—0x10 | (column&0xf0)>>4

低4位列地址命令:0000A3A2A1A0—00000000|A3A2A1A0—0x00 | (column&0x0f)

OLED_DC=0;//发送命令

SPI_Exchange_Byte(0x10 | (column&0xf0)>>4);//发送高4位列地址(A7~A4)

SPI_Exchange_Byte(0x00 | (column&0x0f) );//发送低4位列地址(A3~A0)

13.2.7.2 页地址

OLED屏一共有64行,将这64行平均分成8份,每一份有8行,每一份就为一页

设定页地址是设定在本页的首行开始显示,而不能设定在本页的任意行开始显示

img

设定页地址为page(A3~A0)

页地址命令:1011A3A2A1A0—10110000 | A3A2A1A0—0xB0|page

OLED_DC=0;//发送命令

SPI_Exchange_Byte(0xB0|page);//设定页地址

13.2.8 OLED初始化

在前面知道OLED的管脚功能,也知道了MCU跟OLED是采用SPI通信。就算对OLED所有的管脚进行了初始化,并且完成SPI协议,但是仍然不能让OLED正常工作起来。我们还需要对OLED进行真正的初始化,就是对显示控制器(驱动芯片)进行初始化工作。

这个初始化官方已经提供了初始化序列给我们,直接调用就行 。

OELD_RES=1; delay_ms(100); OELD_RES=0; delay_ms(100); OELD_RES=1; delay_ms(100); Oled_Write_Cmd(0xAE); //关闭显示 Oled_Write_Cmd(0xD5); //设置时钟分频因子,震荡频率 Oled_Write_Cmd(80); //[3:0],分频因子;[7:4],震荡频率 Oled_Write_Cmd(0xA8); //设置驱动路数 Oled_Write_Cmd(0X3F); //默认0X3F(1/64) Oled_Write_Cmd(0xD3); //设置显示偏移 Oled_Write_Cmd(0X00); //默认为0 Oled_Write_Cmd(0x40); //设置显示开始行 [5:0],行数. Oled_Write_Cmd(0x8D); //电荷泵设置 Oled_Write_Cmd(0x14); //bit2,开启/关闭 Oled_Write_Cmd(0x20); //设置内存地址模式 Oled_Write_Cmd(0x02); //[1:0],00,列地址模式;01,行地址模式;10,页地址模式;默认10; Oled_Write_Cmd(0xA1); //段重定义设置,bit0:0,0->0;1,0->127; Oled_Write_Cmd(0xC8); //设置COM扫描方向;bit3:0,普通模式;1,重定义模式 COM[N-1]->COM0;N:驱动路数 Oled_Write_Cmd(0xDA); //设置COM硬件引脚配置 Oled_Write_Cmd(0x12); //[5:4]配置 Oled_Write_Cmd(0x81); //对比度设置 Oled_Write_Cmd(0xEF); //1~255;默认0X7F (亮度设置,越大越亮) Oled_Write_Cmd(0xD9); //设置预充电周期 Oled_Write_Cmd(0xf1); //[3:0],PHASE 1;[7:4],PHASE 2; Oled_Write_Cmd(0xDB); //设置VCOMH 电压倍率 Oled_Write_Cmd(0x30); //[6:4] 000,0.65vcc;001,0.77vcc;011,0.83*vcc; Oled_Write_Cmd(0xA4); //全局显示开启;bit0:1,开启;0,关闭;(白屏/黑屏) Oled_Write_Cmd(0xA6); //设置显示方式;bit0:1,反相显示;0,正常显示 Oled_Write_Cmd(0xAF); //开启显示

当我调用OLED初始化函数后,OLED屏就有东西显示出来。但是我在本代码里并没有发送任何显示数据。这是因为我OLED显示控制器的显存里面已经存在着显示数据,我初始化成功了就能从显存把显示数据显示在OLED屏上。

但是正常情况并不希望在初始化OLED完成有任何东西显示出来。所以在OLED初始化完成后要有一个清屏动作。

如何清屏?–其实就是发送显示数据。

13.3 OLED显示方式说明

img

每发送完一个显示数据,列地址会自动加1.

13.4 显示代码的编程流程

得到显示数据

设定页地址

设定列地址

发送显示数据

13.5 显示文字

13.5.1 程序设计流程

得到带显示文字的点阵编码

设定页地址

设定列地址

发送显示数据

13.5.2 取模方法

img

img

img

13.6 显示图片

13.6.1 程序设计流程

13.6.2 取模方法

13.7 STM32的SPI控制器操作OLED

img

13.7.1 STM32的SPI总线介绍

串行外设接口(SPI)允许芯片与外部设备以半/全双工、同步、串行方式通信。此接口可以被配置成主模式,并为外部从设备提供通信时钟(SCK)。接口还能以多主配置方式工作。
它可用于多种用途,包括使用一条双向数据线的双线单工同步传输,还可使用CRC校验的可靠通信。

13.7.1.1 SPI控制器特征

● 3线全双工同步传输
● 带或不带第三根双向数据线的双线单工同步传输
● 8或16位传输帧格式选择
● 主或从操作(做为主设备还是从设备)
● 支持多主模式
● 8个主模式波特率预分频系数(最大为fPCLK/2)–设定SPI数据传输速度
● 从模式频率 (最大为fPCLK/2)
● 主模式和从模式的快速通信
● 主模式和从模式下均可以由软件或硬件进行NSS管理:主/从操作模式的动态改变
● 可编程的时钟极性和相位(决定MODE0~3)
● 可编程的数据顺序, MSB在前或LSB在前
● 可触发中断的专用发送和接收标志
● SPI总线忙状态标志
● 支持可靠通信的硬件CRC
─ 在发送模式下, CRC值可以被作为最后一个字节发送

─ 在全双工模式中对接收到的最后一个字节自动进行CRC校验
● 可触发中断的主模式故障、过载以及CRC错误标志
● 支持DMA功能的1字节发送和接收缓冲器:产生发送和接受请求

13.7.2 STM32的SPI控制器框架(重点)

img

要通过SPI控制器发送数据,就是要把数据写入到数据寄存器(DR)里,然后数据寄存器(DR)里的数据就会被送到移位寄存器里,然后再移位寄存器中的数据就会按照设定的帧格式(高位先出/低位先出)一位一位地通过MOSI发送出去,同时也会通过MISO一位一位地接收到新的数据。当移位寄存器把待发送的数据全部发送出去后,也就会接受一个完整的新数据,移位寄存器就会把这个新数据送到接收缓冲区里。然后通过读取数据寄存器(DR)就能得到该数据。

上述数据传输过程受到主控制电路的控制。

13.7.3 STM32的SPI相关寄存器

img

13.7.4 SPI控制器使用

img

速度限制:

img

[外链图片转存中…(img-bwDJFQxy-1700124605457)]

要通过SPI控制器发送数据,就是要把数据写入到数据寄存器(DR)里,然后数据寄存器(DR)里的数据就会被送到移位寄存器里,然后再移位寄存器中的数据就会按照设定的帧格式(高位先出/低位先出)一位一位地通过MOSI发送出去,同时也会通过MISO一位一位地接收到新的数据。当移位寄存器把待发送的数据全部发送出去后,也就会接受一个完整的新数据,移位寄存器就会把这个新数据送到接收缓冲区里。然后通过读取数据寄存器(DR)就能得到该数据。

上述数据传输过程受到主控制电路的控制。

13.7.3 STM32的SPI相关寄存器

[外链图片转存中…(img-dJL9Kwwf-1700124605457)]

13.7.4 SPI控制器使用

[外链图片转存中…(img-jod05jCk-1700124605463)]

速度限制:

[外链图片转存中…(img-IzVxDiRY-1700124605463)]

img

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/184668.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Android】使用XML资源文件存储配置项:降低代码耦合性并提高可重用性

前言 在Android开发中&#xff0c;我们经常需要存储一些配置项。 例如在创建Retrofit实例时&#xff0c;需要指定baseUrl。如果需要修改替换整个项目中的baseUrl&#xff0c;那将会是一件很痛苦的事情。 为了方便管理和维护这些配置项&#xff0c;我们可以使用资源文件来存储…

无需API实现MySQL与巨量引擎的对接

通过数环通&#xff0c;您可以使用不到几分钟的时间即可实现MySQL与巨量引擎的对接与集成&#xff0c;从而高效实现工作流程自动化&#xff0c;降本增效&#xff01; 1.产品介绍 巨量引擎是字节跳动旗下的营销服务品牌&#xff0c;它整合了字节跳动旗下的产品及海量内容&#…

Spring Task使用介绍

文章目录 Spring Task介绍cron表达式入门案例Spring Task使用步骤全注解的方式代码开发测试结果 代码仓库 Spring Task 介绍 Spring Task 是Spring框架提供的任务调度工具&#xff0c;可以按照约定的时间自动执行某个代码逻辑。 定位定时任务框架 作用定时自动执行某段Java…

编程时不知道怎么给函数起一个好名字时怎么办

2023年11月16日&#xff0c;周四下午 解决办法 把函数的功能告诉ChatGPT&#xff0c;然后让它帮你给函数起名就可以了&#xff0c; 相信我&#xff0c;它取的名字真的很好。 举例说明 思维拓展 其实不光函数&#xff0c;变量、枚举等的名字也可以让ChatGPT取。

计算机网络:网络层ARP协议

在实现IP通信时使用了两个地址&#xff1a;IP地址&#xff08;网络层地址&#xff09;和MAC地址&#xff08;数据链路层地址&#xff09; 问题&#xff1a;已知一个机器&#xff08;主机或路由器&#xff09;的IP地址&#xff0c;如何找到相应的MAC地址&#xff1f; 为了解决…

DNS正向解析和主从复制

目录 概念 DNS解析 例&#xff1a;www.baidu.com. 解析过程 DNS查询方式 DNS的查询过程 DNS软件bind 正向解析&#xff08;根据域名查找ip地址&#xff09; 1.先安装bind软件 2.打开网卡配置文件 将DNS1改为自己本机 &#xff08;更改完配置重启服务&#xff09; 3.打…

SpringMVC调用流程

SpringMVC的调用流程 SpringMVC涉及组件理解&#xff1a; DispatcherServlet : SpringMVC提供&#xff0c;我们需要使用web.xml配置使其生效&#xff0c;它是整个流程处理的核心&#xff0c;所有请求都经过它的处理和分发&#xff01;[ CEO ] HandlerMapping : SpringMVC提供&…

SpringCloud微服务:Nacos快速入门

目录 第一步&#xff1a;cloud-demo的pom文件 第二步&#xff1a;user-service的pom文件 第三步&#xff1a; user-service的yml文件 第四步&#xff1a;order-service的pom文件 第五步&#xff1a; order-service的yml文件 运行 访问数据 1.Nacos服务搭建 下载安装包 …

如何深度了解汤泉场所?VR全景给你答案

天气逐步转凉&#xff0c;温泉、水会这些室内汤泉场所开始登上消费的主战场。伴随着人们物质生活水平的提高&#xff0c;人们对休闲养生会馆的要求也愈发旺盛&#xff0c;汤泉场所也逐渐从单一的洗浴开始向休闲、娱乐、保健、桑拿等多种业态形式发展&#xff0c;那么大家如何深…

java雷区?要小心的子父类代码!

目录 一段子父类调用重写的代码 1. 重写的代码 2. 执行结果 3. 分析原因 4. 总结概括 一段子父类调用重写的代码 这是一段有坑的代码&#xff0c;我们创建一个子类A和父类B&#xff0c;A中重写function方法&#xff0c;并且在B的构造方法中调用function 1. 重写的代码 …

C# - 委托、事件、Action、Func

前言&#xff1a;所有的名词&#xff0c;都是基于委托产生的 委托 &#xff08;delegate&#xff09; 解释&#xff1a; 其实就是一种指定格式的函数模版(容器) 这个模版(容器)可以用来存放各种格式和它相同的函数(的引用) 比如指定类型参数 指定参数个数 指定返回值等等 定义…

GB28181流媒体平台LiveGBS切换为国产信创环境下达梦数据库、高斯数据库、瀚高数据库的配置说明

LiveGBS流媒体平台GB/T28181功能-支持数据库切换为高斯数据库信创瀚高数据信创数据库 1、如何配置切换信创达梦数据库&#xff1f;2、如何配置切换高斯数据库&#xff1f;3、如何配置切换信创瀚高数据库&#xff1f;4、搭建GB28181视频直播平台 1、如何配置切换信创达梦数据库&…