PyTorch DataLoader整理函数详解【collate_fn】

DataLoader 是 PyTorch 中最常用的类之一。 而且,它是你首先学习的内容之一。 该类有很多参数,但最有可能的是,你将使用其中的大约三个参数(dataset、shuffle 和 batch_size)。 今天我想解释一下 collate_fn 的含义—根据我的经验,我发现它让初学者感到困惑。 我们将简要探讨 PyTorch 如何创建批数据,并了解如何根据需要修改默认行为。

在线工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 

1、批创建流程

每个深度学习课程中最重要的信息之一是我们批量执行训练/推理。 大多数时候,一个批次只是一些堆叠的数据样本。 但在某些情况下,我们想修改它的创建方式。

首先,让我们研究一下默认情况下会发生什么。 假设我们有以下玩具数据集。 它包含四个示例,每个示例三个功能。

import torch
from torch.utils.data import DataLoader
import numpy as npdata = np.array([[0.1, 7.4, 0],[-0.2, 5.3, 0],[0.2, 8.2, 1],[0.2, 7.7, 1]])
print(data)

如果我们向加载程序请求一个批次,我们将看到以下内容(请注意,我设置了 shuffle=False 以消除随机性):

loader = DataLoader(data, batch_size=2, shuffle=False)
batch = next(iter(loader))
print(batch)# tensor([[ 0.1000,  7.4000,  0.0000],
#         [-0.2000,  5.3000,  0.0000]], dtype=torch.float64)

结果毫不奇怪,但让我们正式描述一下已经做了什么:

  • 加载器从数据集中选择了 2 个样本。
  • 这些样本被转换为张量(2 个大小为 3 的样本)。
  • 创建并返回一个新的张量 (2x3)。

默认设置还允许我们使用字典。 让我们看一个例子:

from pprint import pprint
# now dataset is a list of dicts
dict_data = [{'x1': 0.1, 'x2': 7.4, 'y': 0},{'x1': -0.2, 'x2': 5.3, 'y': 0},{'x1': 0.2, 'x2': 8.2, 'y': 1},{'x1': 0.2, 'x2': 7.7, 'y': 10},
]
pprint(dict_data)
# [{'x1': 0.1, 'x2': 7.4, 'y': 0},
# {'x1': -0.2, 'x2': 5.3, 'y': 0},
# {'x1': 0.2, 'x2': 8.2, 'y': 1},
# {'x1': 0.2, 'x2': 7.7, 'y': 10}]loader = DataLoader(dict_data, batch_size=2, shuffle=False)
batch = next(iter(loader))
pprint(batch)
# {'x1': tensor([ 0.1000, -0.2000], dtype=torch.float64),
#  'x2': tensor([7.4000, 5.3000], dtype=torch.float64),
#  'y': tensor([0, 0])}

加载器足够聪明,可以正确地从字典列表中重新打包数据。 当你的数据采用 JSONL 格式(我个人更喜欢这种格式而不是 CSV)时,此功能非常方便。

2、自定义collate函数

如果默认规则如此智能,为什么我们需要创建自定义collate规则呢? 默认设置有一个很大的限制——批数据必须处于同一维度。 假设我们有一个 NLP 任务,并且数据是分词后的文本。

# values are token indices but it does not matter - it can be any kind of variable-size data
nlp_data = [{'tokenized_input': [1, 4, 5, 9, 3, 2],'label':0},{'tokenized_input': [1, 7, 3, 14, 48, 7, 23, 154, 2],'label':0},{'tokenized_input': [1, 30, 67, 117, 21, 15, 2],'label':1},{'tokenized_input': [1, 17, 2],'label':0},
]
loader = DataLoader(nlp_data, batch_size=2, shuffle=False)
batch = next(iter(loader))

上面的代码不会工作并引发错误:

/usr/local/lib/python3.7/dist-packages/torch/utils/data/_utils/collate.py in default_collate(batch)80         elem_size = len(next(it))81         if not all(len(elem) == elem_size for elem in it):
---> 82             raise RuntimeError('each element in list of batch should be of equal size')83         transposed = zip(*batch)84         return [default_collate(samples) for samples in transposed]RuntimeError: each element in list of batch should be of equal size

错误消息表明不可能创建非矩形张量。 顺便说一句,可以看到触发错误的是 default_collate函数。

我们可以做什么? 有两种解决方案:

  • 将整个数据集填充到最长的样本。
  • 在批创建期间动态填充。

第一个解决方案可能看起来更简单—只需将所有样本扩展到最长的样本即可。 但有一个问题—我们会浪费内存和计算能力(它们在 GPU 上很昂贵!)来处理 padding,这并不影响结果。 如果我们的数据中有一些长序列,而且大多数序列都相对较短,那就尤其痛苦。 在这种情况下,我们主要是处理填充而不是数据!

如果我们将整个数据集填充到最长的序列,会浪费大量空间!

另一种方法是动态填充数据。 当选择该批的样本时,我们只将它们填充到最长的样本。 如果我们另外按长度对数据进行排序,则填充将是最小的。 如果有一些非常长的序列,它们只会影响它们的批次,而不是整个数据集。

好吧,但是如何实现呢? 只需创建一个自定义 collate_fn , 这很简单:

from torch.nn.utils.rnn import pad_sequence #(1)def custom_collate(data): #(2)inputs = [torch.tensor(d['tokenized_input']) for d in data] #(3)labels = [d['label'] for d in data]inputs = pad_sequence(inputs, batch_first=True) #(4)labels = torch.tensor(labels) #(5)return { #(6)'tokenized_input': inputs,'label': labels}loader = DataLoader(nlp_data, batch_size=2, shuffle=False, collate_fn=custom_collate
) #(7)iter_loader = iter(loader)
batch1 = next(iter_loader)
pprint(batch1)
batch2 = next(iter_loader)
pprint(batch2)# {'label': tensor([0, 0]),
#  'tokenized_input': tensor([
#   [  1,   4,   5,   9,   3,   2,   0,   0,   0],
#   [  1,   7,   3,  14,  48,   7,  23, 154,   2]
# ])}# {'label': tensor([1, 0]),
#  'tokenized_input': tensor([
#   [  1,  30,  67, 117,  21,  15,   2],
#   [  1,  17,   2,   0,   0,   0,   0]])}

代码说明如下:

  • 我们使用 pad_sequence进行填充
  • Collate 函数要传入单个参数 - 样本列表。 在这种情况下,它将是一个字典列表,但它也可以是一个元组列表等——具体取决于数据集。
  • 当数据出现时,如果格式为“字典列表”,我们需要遍历它并为所有输入和标签创建一个单独的列表。 与此同时, tokenized_input 被转换为一维张量(它是一个整数列表)。
  • 执行填充。
  • 由于标签是整数列表,我们将其转换为张量。
  • 返回格式化的批次。
  • 在加载器中设置我们的自定义整理函数。

正如我们所看到的,批的格式与字典的默认排序规则相同。 我们清楚地看到填充量很小。

3、结束语

创建自定义整理函数可能不是最常见的任务,但你绝对需要知道如何去做。


原文链接:PyTorch collate_fn详解 - BimAnt

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/190404.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

猜数字优化版(带进度条)

其实就是加了个动态进度条显示加载游戏的流程&#xff0c;这样看上去是不是更有big了hhhh #include<windows.h> #include<iostream> #include<ctime> using namespace std; void menu() {printf("1.开始游戏\n");printf("0.退出游戏\n")…

如何从回收站恢复已删除的文件

我们在各个领域都使用计算机。无论是专业工作还是个人工作&#xff0c;我们在生活中总能找到计算机的用途。因此&#xff0c;我们在很大程度上依赖于我们的计算机。计算机是办公室和企业部门使用的高效机器。 人们使用个人计算机发送电子邮件、创建文档、听音乐和观看视频等等…

git基本操作(配图超详细讲解)

个人主页&#xff1a;Lei宝啊 愿所有美好如期而遇 目录 创建git本地仓库 配置仓库 认识工作区&#xff0c;暂存区&#xff0c;版本库 修改文件 版本回退 撤销修改 删除文件 创建git本地仓库 要提前说的是&#xff0c;仓库是进⾏版本控制的⼀个⽂件⽬录。我们要想对⽂…

【具身智能评估1】具身视觉语言规划(EVLP)仿真环境汇总

参考论文&#xff1a;Core Challenges in Embodied Vision-Language Planning 论文作者&#xff1a;Jonathan Francis, Nariaki Kitamura, Felix Labelle, Xiaopeng Lu, Ingrid Navarro, Jean Oh 论文原文&#xff1a;https://arxiv.org/abs/2106.13948 论文出处&#xff1a;Jo…

Linux shell编程学习笔记26:stty(set tty)

之前我们探讨了Linux中的tty&#xff0c;tty命令的主要功能是显示当前使用的终端名称。 如果我们想进一步对tty进行设置&#xff0c;就要用到stty。 stty的功能&#xff1a;显示和修改终端特性&#xff08;Print or change terminal characteristics&#xff09;。 1 stty -…

【快速解决】实验三 简单注册的实现《Android程序设计》实验报告

目录 前言 实验要求 实验三 简单注册的实现 实验目的&#xff1a; 实验内容&#xff1a; 实验提示&#xff1a; 无 三、遇到的问题总结&#xff08;如果有问题&#xff0c;请总结。如果没问题请写“无”&#xff09; 正文开始 第一步建立项目 第二步选择empty views a…

基于静电放电算法优化概率神经网络PNN的分类预测 - 附代码

基于静电放电算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于静电放电算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于静电放电优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神…

振南技术干货集:比萨斜塔要倒了,倾斜传感器快来!(5)

注解目录 1、倾斜传感器的那些基础干货 1.1 典型应用场景 &#xff08;危楼、边坡、古建筑都是对倾斜敏感的。&#xff09; 1.2 倾斜传感器的原理 1.2.1 滚珠式倾斜开关 1.2.2 加速度式倾斜传感器 1)直接输出倾角 2)加速度计算倾角 3)倾角精度的提高 &#xff08;如果…

训练模型报错RuntimeError: Input, output and indices must be on the current device

问题出现&#xff1a; 当我训练图网络模型时&#xff0c;源码默认使用cpu&#xff0c;查看后台性能运行&#xff0c;发现正在使用cpu训练&#xff0c;这大大降低了训练速率&#xff0c;并且增加了电脑负载。所以我决定将模型改造并训练放在GPU上运行。 我在train方法中&#xf…

UE5 C++报错:is not currently enabled for Live Coding

解决办法&#xff1a; 再次打开项目&#xff0c;以此法打开&#xff1a;

再也不用担心忘记密码了!如何在Windows 10或11中重置被遗忘的密码

​如果你忘记了Windows电脑的密码,不要惊慌。Windows 10和Windows 11都允许你重置忘记的密码,无论你使用的是Microsoft帐户还是本地帐户。你所要做的就是回答你的安全问题以重置密码。另一种选择是创建一个密码重置盘,你可以在任何U盘上进行。 除了使用密码之外,你还应该启…

springBoot中starter

springBoot项目中引入starter 项目引入xxljob&#xff0c;仅需要导入对应的starter包&#xff0c;即可进行快速开发 <dependency><groupId>com.ydl</groupId><artifactId>xxl-job-spring-boot-starter</artifactId><version>0.0.1-SNAPS…