STM32/N32G455国民科技芯片驱动DS1302时钟---笔记

这次来分享一下DS1302时钟IC,之前听说过这个IC,但是一直没搞过,用了半天时间就明白了原理和驱动,说明还是很简单的。

注:首先来区分一下DS1302和RTC时钟有什么不同,为什么不直接用RTC呢?

RTC不是很精准

DS1302:用于对时间精度较严格的产品上

1.首先看下实物图长什么样

2.然后我们来看看原理图长啥样

2.1无上拉电阻的配置

2.2有上拉电阻就将端口配置成开漏输出就行

3.下面来看怎么配置代码

由于DS1302的DATA根据时序图,还要配成输入模式

所以还得写上区分

然后后面的代码就照抄就行,只要会IIC,SPI协议,这些一看就明白是什么意思啦,无非就是移位和最高/最低位判断,然后将DATA拉高或者拉低,换汤不换药,简简单单。

根据DS1302的特殊寄存器,假设现在是15秒,那么1302的寄存器里面存储的是0x15,而不是0x0F,也就是说十六进制的0xAB,表示一个十进制数,高四位A代表十位,低四位B代表个位
,但这毕竟是用16进制表示的数字,我们在单片机的代码里操作起来并不方便,我们需要转换为正儿八经的十进制

所以上面一大堆,可能看的很乱,来,我们现在来捋一捋

还是假设是15秒

好,我们来分析上面的也就是说十六进制的0xAB,表示一个十进制数,高四位A代表十位,低四位B代表个位这句话

0X15=0001 0101

高四位右移:0001 0101 >>4=0000 0001=1

第四位不动:0000 0101&0X0F

        0000 0101

 &                               ->  0000 0101 =5

        0000 1111

好,那么这不就是15秒吗?

那么就有了后面的代码

这样就非常的清晰了吧,有没有拍桌子,拍案叫绝的感觉了!

我将DS1302.C和DS1302.H的代码都复制到后面,核心重点就讲完了,毫无难度呀

DS1302.C

#include "DS1302.h"
#include "main.h"TIME Time_Hex,Time_Dec,Time_Set;#define DS1302DELAY  100const u8 Ds1302SendBuf[6] = {0x23, 0x11, 0x15, 0x13, 0x49, 0x00}; //2016unsigned char  Month[13] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};void INPUT_SDA()
{RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOA ,ENABLE);	GPIO_InitType GPIO_InitStructure;GPIO_InitStructure.Pin =  GPIO_PIN_7;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;//设置使用带宽50MhzGPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;  //输入模式GPIO_InitPeripheral(GPIOA, &GPIO_InitStructure);
}void OUTPUT_SDA()
{RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOA ,ENABLE);	GPIO_InitType GPIO_InitStructure;GPIO_InitStructure.Pin =  GPIO_PIN_7;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;//设置使用带宽50MhzGPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;  //输出模式GPIO_InitPeripheral(GPIOA, &GPIO_InitStructure);
}void uDelay(unsigned int count)
{unsigned int j;for(j=0;j<count;j++) ;	
}void SendDat_1302(u8 Dat)
{ u8 i;u8 cTmp;for(i=0;i<8;i++){ cTmp=Dat&LSB; //数据端等于tmp数据的末位值if(cTmp)    //1DS1302DAT_H;elseDS1302DAT_L; Dat>>=1;uDelay(DS1302DELAY);DS1302CLK_H;uDelay(DS1302DELAY);DS1302CLK_L;uDelay(DS1302DELAY);}
}/*写入1个或者多个字节,第1个参数是相关命令
#define WrMulti     0xbe //写入多个字节的指令代码
#define WrSingle    0x84 //写入单个字节的指令代码
第2个参数是待写入的值
第3个参数是待写入数组的指针
*/ 
void WriteByte_1302(u8 CmdDat,u8 Num,u8 *pSend)
{ u8 i=0;DS1302RST_L;uDelay(DS1302DELAY);	DS1302RST_H;SendDat_1302(CmdDat);for(i=0;i<Num;i++){ SendDat_1302(*(pSend+i));}DS1302RST_L;
}
/*读出字节,第一个参数是命令
#define RdMulti  0xbf //读出多个字节的指令代码
第2个参数是读出的字节数,第3个是指收数据数组指针
*/
void RecByte_1302(u8 CmdDat,u8 Num,u8 *pRec)
{ u8 i,j,tmp=0,cTmp;DS1302RST_L;//复位引脚为低电平uDelay(DS1302DELAY);DS1302CLK_L;uDelay(DS1302DELAY);DS1302RST_H;SendDat_1302(CmdDat); //发送命令INPUT_SDA();uDelay(DS1302DELAY);for(i=0;i<Num;i++){ for(j=0;j<8;j++){ tmp>>=1;cTmp=DS1302DAT_READ;if(cTmp)tmp|=0x80;DS1302CLK_H;uDelay(DS1302DELAY);DS1302CLK_L;       uDelay(DS1302DELAY);}*(pRec+i)=tmp;}uDelay(DS1302DELAY);OUTPUT_SDA();DS1302RST_L;//复位引脚为低电平
}
/*
当写保护寄存器的最高位为0时,允许数据写入寄存器。
写保护寄存器可以通过命令字节8E、8F来规定禁止写入/读出。写保护位不能在多字节传送模式下写入。
当写保护寄存器的最高位为1时,禁止数据写入寄存器。
时钟停止位操作:当把秒寄存器的第7位时钟停止位设置为0时起动时钟开始
当把秒寄存器的第7位时钟停止位设置为1时,时钟振荡器停止。根据传入的参数决定相关命令,
第一个参数:命令字,第2个参数:写入的数据
写允许命令;8EH,00H
写禁止命令;8EH,80H
振荡器允许命令;80H,00H
振荡器禁止命令;80H,80H
*/
void WrCmd(u8 CmdDat,u8 CmdWord)
{ u8* CmdBuf;CmdBuf=&CmdWord;WriteByte_1302(CmdDat,1,CmdBuf);
}void DS1302_Init(void)
{
//DS1302====================WrCmd(0x80, 0x00); //?????WrCmd(0x8C, Ds1302SendBuf[0]);WrCmd(0x88, Ds1302SendBuf[1]);WrCmd(0x86, Ds1302SendBuf[2]);//const u8 Ds1302SendBuf[6] = {0x23, 0x11, 0x15, 0x13, 0x49, 0x00}; //2016WrCmd(0x84, Ds1302SendBuf[3]);WrCmd(0x82, Ds1302SendBuf[4]);WrCmd(0x80, Ds1302SendBuf[5]);WrCmd(0x8e, 0x80);	
}void Save_TimeDate(void)
{WrCmd(WrEnDisCmd, WrEnDat); WrCmd(0x80, 0x00); WrCmd(0x8C, Time_Hex.year);WrCmd(0x88, Time_Hex.month);WrCmd(0x86, Time_Hex.day);WrCmd(0x84, Time_Hex.hour);WrCmd(0x82, Time_Hex.minute);WrCmd(0x80, Time_Hex.second);WrCmd(0x8e, 0x80);
}void Get_Time(void)
{WrCmd(0x8F,0x00);RecByte_1302(0x8D,1,(u8*)&Time_Hex.year);RecByte_1302(0x89,1,(u8*)&Time_Hex.month);RecByte_1302(0x87,1,(u8*)&Time_Hex.day);RecByte_1302(0x85,1,(u8*)&Time_Hex.hour);RecByte_1302(0x83,1,(u8*)&Time_Hex.minute);	RecByte_1302(0x81,1,(u8*)&Time_Hex.second);Time_Dec.year = (Time_Hex.year>>4)*10 + (Time_Hex.year&0x0f); 	Time_Dec.month = (Time_Hex.month>>4)*10 + (Time_Hex.month&0x0f);Time_Dec.day = (Time_Hex.day>>4)*10 + (Time_Hex.day&0x0f);Time_Dec.hour = (Time_Hex.hour>>4)*10 + (Time_Hex.hour&0x0f);Time_Dec.minute = (Time_Hex.minute>>4)*10 + (Time_Hex.minute&0x0f);Time_Dec.second = (Time_Hex.second>>4)*10 + (Time_Hex.second&0x0f);	
}void Check_date(void)
{		Time_Dec.year   = Time_Set.year; 	Time_Dec.month  = Time_Set.month;Time_Dec.day    = Time_Set.day;Time_Dec.hour   = Time_Set.hour;Time_Dec.minute = Time_Set.minute;Time_Dec.second = Time_Set.second;if(Time_Dec.month < 1)  Time_Dec.month = 1;if(Time_Dec.month > 12) Time_Dec.month = 12;if(Time_Dec.day < 1)    Time_Dec.day = 1;if(Time_Dec.day> 31)     Time_Dec.day= 31;if(Time_Dec.hour  > 23) Time_Dec.hour= 23;		 if(Time_Dec.minute  > 59) Time_Dec.minute  = 59;	if(Time_Dec.second > 60) Time_Dec.second = 0;if(Time_Dec.minute > 60) Time_Dec.minute = 0;if(Time_Dec.hour > 60) Time_Dec.hour = 0;  	if(Time_Dec.year > 99)  Time_Dec.year = 99;Month[2] = 28;if((Time_Dec.year % 4 == 0 && Time_Dec.year % 100 != 0) || (Time_Dec.year % 400 == 0) )Month[2] = 29;    if(Time_Dec.day > Month[Time_Dec.month])    Time_Dec.day = Month[Time_Dec.month];	Time_Hex.year = 		((Time_Dec.year/10)<<4) 		| (Time_Dec.year%10);Time_Hex.month = 		((Time_Dec.month/10)<<4) 		| (Time_Dec.month%10);Time_Hex.day = 			((Time_Dec.day/10)<<4) 			| (Time_Dec.day%10);Time_Hex.hour = 		((Time_Dec.hour/10)<<4) 		| (Time_Dec.hour%10);Time_Hex.minute = 	((Time_Dec.minute/10)<<4) 	| (Time_Dec.minute%10);Time_Hex.second = 	((Time_Dec.second/10)<<4) 	| (Time_Dec.second%10);
}

DS1302.H

#ifndef __DS1302_H
#define __DS1302_H#include "main.h"#define  u8 unsigned char typedef struct 
{unsigned char year  	;unsigned char month 	;unsigned char day   	;unsigned char hour  	;unsigned char minute 	;unsigned char second 	;
} TIME;#define DS1302CLK_H  		GPIO_SetBits(GPIOA,GPIO_PIN_6)
#define DS1302CLK_L  		GPIO_ResetBits(GPIOA,GPIO_PIN_6)#define DS1302DAT_H  		GPIO_SetBits(GPIOA,  GPIO_PIN_7)
#define DS1302DAT_L  		GPIO_ResetBits(GPIOA,GPIO_PIN_7)
#define DS1302DAT_READ  GPIO_ReadInputDataBit(GPIOA,  GPIO_PIN_7)#define DS1302RST_H  		GPIO_SetBits(GPIOC,  GPIO_PIN_4)
#define DS1302RST_L  		GPIO_ResetBits(GPIOC,GPIO_PIN_4)#define WrEnDisCmd  0x8e  //写允许/禁止指令代码
#define WrEnDat     0x00 //写允许数据
#define WrDisDat    0x80 //写禁止数据
#define OscEnDisCmd 0x80 //振荡器允许/禁止指令代码
#define OscEnDat    0x00 //振荡器允许数据
#define OscDisDat   0x80 //振荡器禁止数据
#define WrMulti     0xbe //写入多个字节的指令代码
#define WrSingle    0x84 //写入单个字节的指令代码
#define RdMulti     0xbf //读出多个字节的指令代码
#define RamMulti_W 	0xFE //写入RAM多个字节的指令代码
#define RamMulti_R 	0xFf //读出多个RAM字节的指令代码#define LSB         0x01 void WrCmd(u8 CmdDat,u8  CmdWord);
void WriteByte_1302(u8 CmdDat,u8 Num,u8 *pSend);
void RecByte_1302(u8 CmdDat,u8 Num,u8 *pRec);
void ReCmd(u8 CmdDat,u8 CmdWord);
void DS1302_Init(void);
void Get_Time(void);
void Save_TimeDate(void);
void Check_date(void);
#endif 

注:以上笔记仅是个人学习笔记,若对你有帮忙那么最好不过,共勉!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/190595.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序开发---实现文件上传和下载

在开发小程序的过程中&#xff0c;我们难免会遇到使用小程序对后端发送文件&#xff1b;或者接收后端的文件&#xff0c;本文章将手把手带你简单高效实现微信小程序的文件上传下载功能 前期准备 由于目前小程序保护用户个人隐私力度加大 &#xff0c;因此我们要想实现文件上传…

【广州华锐互动】VR技术助力中小学生安全教育,让学生在虚拟世界中学会自我保护!

随着科技的不断发展&#xff0c;虚拟现实&#xff08;VR&#xff09;技术已经逐渐走进我们的生活。在教育领域&#xff0c;VR技术的应用也日益广泛&#xff0c;为传统的教育模式带来了革命性的变革。中小学生安全教育作为学生生活中的重要组成部分&#xff0c;其重要性不言而喻…

揭秘“ChatGPT之父”突遭罢免内幕:从开发者大会起,几件事已有征兆

腾讯新闻《潜望》 纪振宇 发自硅谷 美国时间11月17日午间&#xff0c;OpenAI首席执行官&#xff0c;被称为“ChatGPT之父”的山姆奥特曼突遭董事会罢免。 OpenAI在当天发布的官方声明称&#xff0c;董事会启动了一项特别的调查&#xff0c;结论是奥特曼在与董事会沟通过程中没…

牛客-- 求解立方根python

描述 计算一个浮点数的立方根&#xff0c;不使用库函数。 保留一位小数。 数据范围&#xff1a;∣val∣≤20 输入描述&#xff1a; 待求解参数&#xff0c;为double类型&#xff08;一个实数&#xff09; 输出描述&#xff1a; 输出参数的立方根。保留一位小数。 使用…

2023 OceanBase 年度发布会:砥砺自研,为“关键业务负载”打造一体化数据库

11 月 16 日&#xff0c;2023 OceanBase 年度发布会在京顺利召开。在本次发布会上&#xff0c;OceanBase 对外正式宣布&#xff1a;将持续践行“一体化”新战略&#xff0c;为关键业务负载打造一体化数据库。同时&#xff0c;会上发布一体化数据库的首个长期支持版本 OceanBase…

为什么C++标准库中atomic shared_ptr不是lockfree实现?

为什么C标准库中atomic shared_ptr不是lockfree实现&#xff1f; 把 shared_ptr 做成 lock_free&#xff0c;应该是没有技术上的可行性。shared_ptr 比一个指针要大不少&#xff1a;最近很多小伙伴找我&#xff0c;说想要一些C的资料&#xff0c;然后我根据自己从业十年经验&am…

[最新榜单] 智能手机数据恢复的 10 款最佳应用

当手机上的数据消失时&#xff0c;这让您感到非常难过。 由于事故而突然丢失重要的聊天记忆、照片和其他您想保留的东西的悲伤。 如果它没有被淹没&#xff0c;您可以使用数据恢复应用程序修复它。 在本文中&#xff0c;我们将解释一些有用的数据恢复应用程序。 数据恢复应用…

嵌入式中一篇搞定Cmake使用教程

今天分享一篇关于 cmake 的相关文章&#xff0c;通过这个工具可以生成本地的Makefile。让我们不用去编写复杂的Makefile。 引言 CMake是开源、跨平台的构建工具&#xff0c;可以让我们通过编写简单的配置文件去生成本地的Makefile&#xff0c;这个配置文件是独立于运行平台和…

【LeetCode】每日一题 2023_11_18 数位和相等数对的最大和(模拟/哈希)

文章目录 刷题前唠嗑题目&#xff1a;数位和相等数对的最大和题目描述代码与解题思路思考解法偷看大佬题解结语 刷题前唠嗑 LeetCode? 启动&#xff01;&#xff01;&#xff01; 本月已经过半了&#xff0c;每日一题的全勤近在咫尺~ 题目&#xff1a;数位和相等数对的最大和…

服务器端请求伪造(SSRF)

概念 SSRF(Server-Side Request Forgery&#xff0c;服务器端请求伪造) 是一种由攻击者构造形成的由服务端发起请求的一个安全漏洞。一般情况下&#xff0c;SSRF是要攻击目标网站的内部系统。&#xff08;因为内部系统无法从外网访问&#xff0c;所以要把目标网站当做中间人来…

FreeRtos 任务切换深入分析

一、背景知识&#xff1a; 1、任务切换包含三个基本流程&#xff1a;保护现场、更新TCB、恢复现场并跳转 2、freertos的任务切换是在xPortPendSVHandler 中断函数中完成的 3、中断函数在调用之前&#xff0c;硬件已经保存了r0,r1,r2,r3,r12,r14(LR),r15(pc)&#xff0c;恢复…

C_11微机原理

一、单项选择题&#xff08;本大题共 15 小题&#xff0c;每小题 3分&#xff0c;共45分。在每小题给出的四个备选项中&#xff0c;选出一个正确的答案。&#xff09; .EXE 文件产生在&#xff08;&#xff09;之后。 A.汇编 B. 编辑 C.用软件转换 D.连接 2,十进制-61的8位二进…