代码随想录算法训练营第五十七天丨 动态规划part17

647. 回文子串

思路

动态规划

动规五部曲:

  • 确定dp数组(dp table)以及下标的含义

如果大家做了很多这种子序列相关的题目,在定义dp数组的时候 很自然就会想题目求什么,我们就如何定义dp数组。

绝大多数题目确实是这样,不过本题如果我们定义,dp[i] 为 下标i结尾的字符串有 dp[i]个回文串的话,我们会发现很难找到递归关系。

dp[i] 和 dp[i-1] ,dp[i + 1] 看上去都没啥关系。

所以我们要看回文串的性质。 如图:

我们在判断字符串S是否是回文,那么如果我们知道 s[1],s[2],s[3] 这个子串是回文的,那么只需要比较 s[0]和s[4]这两个元素是否相同,如果相同的话,这个字符串s 就是回文串。

那么此时我们是不是能找到一种递归关系,也就是判断一个子字符串(字符串的下表范围[i,j])是否回文,依赖于,子字符串(下表范围[i + 1, j - 1])) 是否是回文。

所以为了明确这种递归关系,我们的dp数组是要定义成一位二维dp数组。

布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。

  • 确定递推公式

在确定递推公式时,就要分析如下几种情况。

整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。

当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。

当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况

  • 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
  • 情况二:下标i 与 j相差为1,例如aa,也是回文子串
  • 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。

以上三种情况分析完了,那么递归公式如下:

if (s[i] == s[j]) {if (j - i <= 1) { // 情况一 和 情况二result++;dp[i][j] = true;} else if (dp[i + 1][j - 1]) { // 情况三result++;dp[i][j] = true;}
}

result就是统计回文子串的数量。

注意这里我没有列出当s[i]与s[j]不相等的时候,因为在下面dp[i][j]初始化的时候,就初始为false。

  • dp数组如何初始化

dp[i][j]可以初始化为true么? 当然不行,怎能刚开始就全都匹配上了。

所以dp[i][j]初始化为false。

  • 确定遍历顺序

遍历顺序可有有点讲究了。

首先从递推公式中可以看出,情况三是根据dp[i + 1][j - 1]是否为true,在对dp[i][j]进行赋值true的。

dp[i + 1][j - 1] 在 dp[i][j]的左下角,如图:

647.回文子串

如果这矩阵是从上到下,从左到右遍历,那么会用到没有计算过的dp[i + 1][j - 1],也就是根据不确定是不是回文的区间[i+1,j-1],来判断了[i,j]是不是回文,那结果一定是不对的。

所以一定要从下到上,从左到右遍历,这样保证dp[i + 1][j - 1]都是经过计算的

有的代码实现是优先遍历列,然后遍历行,其实也是一个道理,都是为了保证dp[i + 1][j - 1]都是经过计算的。

代码如下:

for (int i = s.size() - 1; i >= 0; i--) {  // 注意遍历顺序for (int j = i; j < s.size(); j++) {if (s[i] == s[j]) {if (j - i <= 1) { // 情况一 和 情况二result++;dp[i][j] = true;} else if (dp[i + 1][j - 1]) { // 情况三result++;dp[i][j] = true;}}}
}
  • 举例推导dp数组

举例,输入:"aaa",dp[i][j]状态如下:

647.回文子串1

图中有6个true,所以就是有6个回文子串。

注意因为dp[i][j]的定义,所以j一定是大于等于i的,那么在填充dp[i][j]的时候一定是只填充右上半部分

以上分析完毕,代码如下:

class Solution {public int countSubstrings(String s) {//[i][j] 表示从 i 到 j 是否为回文子串boolean[][] dp = new boolean[s.length()][s.length()];int result = 0;for (int i = s.length()-1; i >= 0; i--) {for (int j = i; j < s.length(); j++) {if (s.charAt(i) == s.charAt(j)){if (j-i <=1){ // 情况一 和 情况二dp[i][j] = true;result++;}else if (j-i>1){if (dp[i+1][j-1] == true){//情况三dp[i][j] = true;result++;}}}}}return result;}
}

516.最长回文子序列

思路

我们刚刚做过了 动态规划:回文子串 (opens new window),求的是回文子串,而本题要求的是回文子序列, 要搞清楚这两者之间的区别。

回文子串是要连续的,回文子序列可不是连续的! 回文子串,回文子序列都是动态规划经典题目。

回文子串,可以做这两题:

  • 647.回文子串
  • 5.最长回文子串

思路其实是差不多的,但本题要比求回文子串简单一点,因为情况少了一点。

动规五部曲分析如下:

  • 确定dp数组(dp table)以及下标的含义

dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]

  • 确定递推公式

在判断回文子串的题目中,关键逻辑就是看s[i]与s[j]是否相同。

如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;

如图: 

516.最长回文子序列

(如果这里看不懂,回忆一下dp[i][j]的定义)

如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。

加入s[j]的回文子序列长度为dp[i + 1][j]。

加入s[i]的回文子序列长度为dp[i][j - 1]。

那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);

516.最长回文子序列1

代码如下:

if (s[i] == s[j]) {dp[i][j] = dp[i + 1][j - 1] + 2;
} else {dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
  • dp数组如何初始化

首先要考虑当i 和j 相同的情况,从递推公式:dp[i][j] = dp[i + 1][j - 1] + 2; 可以看出 递推公式是计算不到 i 和j相同时候的情况。

所以需要手动初始化一下,当i与j相同,那么dp[i][j]一定是等于1的,即:一个字符的回文子序列长度就是1。

其他情况dp[i][j]初始为0就行,这样递推公式:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); 中dp[i][j]才不会被初始值覆盖。

int[][] dp = new int[len][len];
for (int i = 0; i < s.size(); i++) dp[i][i] = 1;
  • 确定遍历顺序

从递归公式中,可以看出,dp[i][j] 依赖于 dp[i + 1][j - 1] ,dp[i + 1][j] 和 dp[i][j - 1],如图:

所以遍历i的时候一定要从下到上遍历,这样才能保证下一行的数据是经过计算的

j的话,可以正常从左向右遍历。

代码如下:

for (int i = s.size() - 1; i >= 0; i--) {for (int j = i + 1; j < s.size(); j++) {if (s[i] == s[j]) {dp[i][j] = dp[i + 1][j - 1] + 2;} else {dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);}}
}
  • 举例推导dp数组

输入s:"cbbd" 为例,dp数组状态如图:

516.最长回文子序列3

红色框即:dp[0][s.size() - 1]; 为最终结果。

以上分析完毕,代码如下:

class Solution {public int longestPalindromeSubseq(String s) {int len = s.length();int[][] dp = new int[len][len];for (int i = len - 1; i >= 0; i--) {dp[i][i] = 1;for (int j = i +1; j < len; j++) {if (s.charAt(i) == s.charAt(j)) {dp[i][j] = dp[i + 1][j - 1] + 2;}else {dp[i][j] = Math.max(dp[i+1][j-1],Math.max(dp[i+1][j],dp[i][j-1]));}}}return dp[0][len-1];}
}
  • 时间复杂度: O(n^2)
  • 空间复杂度: O(n^2)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/190706.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Leetcode——最长递增子序列

1. 题目链接&#xff1a;300. 最长递增子序列 2. 题目描述&#xff1a; 给你一个整数数组 nums &#xff0c;找到其中最长严格递增子序列的长度。 子序列 是由数组派生而来的序列&#xff0c;删除&#xff08;或不删除&#xff09;数组中的元素而不改变其余元素的顺序。例如&a…

F. Alex‘s whims Codeforces Round 909 (Div. 3) 1899F

Problem - F - Codeforces 题目大意&#xff1a;有q次询问&#xff0c;每次询问给出一个数x&#xff0c;要求构造一棵n个点的树&#xff0c;使得对于每次询问&#xff0c;树上都有一条简单路径的长度等于x&#xff0c;同时每次询问前可以对树进行一次操作&#xff0c;即将一个…

泛微E-Cology CheckServer.jspSQL注入漏洞(QVD-2023-9849) 复现

泛微E-Cology CheckServer.jspSQL注入漏洞(QVD-2023-9849) 复现 1.漏洞描述 泛微 Ecology OA 系统对用户传入的数据过滤处理不当&#xff0c;导致存在 SQL 注入漏洞&#xff0c;未经过身份认证的远程攻击者可利用此漏洞执行任意SQL指令&#xff0c;从而窃取数据库敏感信息。 …

使用ADS进行serdes仿真时,Tx_Diff中EQ的设置对发送端波形的影响。

研究并记录一下ADS仿真中Tx_Diff的EQ设置。原理图如下&#xff1a; 最上面是选择均衡方法Choose equalization method&#xff1a;Specify FIR taps&#xff0c;Specify de-emphasis和none。 当选择Specify de-emphasis选项时&#xff0c;下方可以输入去加重具体的dB值&#x…

typora使用PicGo自动上传图片到chevereto图床

typora使用PicGo自动上传图片到chevereto图床 近期发现&#xff0c;gitee图床不能用了。github又涉及科学上网。搜索了开源图床方案&#xff0c;找到了chevereto&#xff0c;使用起来还不错。分享给大家。 文章目录 typora使用PicGo自动上传图片到chevereto图床chevereto图床安…

java使用 TCP 的 Socket API 实现客户端服务器通信

一&#xff1a;什么是 Socket(套接字) Socket 套接字是由系统提供于网络通信的技术, 是基于 TCP/IP 协议的网络通信的基本操作&#xff0c;要进行网络通信, 需要有一个 socket 对象, 一个 socket 对象对应着一个 socket 文件, 这个文件在 网卡上而不是硬盘上, 所以有了 sokcet…

ForkLift:macOS文件管理器/FTP客户端

ForkLift 是一款macOS下双窗口的文件管理器&#xff0c;可以代替本地的访达。ForkLift同时具备连接Ftp、SFtp、WebDav以及云服务器。 ForkLift还具备访达不具备的小功能&#xff0c;比如从文件夹位置打开终端&#xff0c;显示隐藏文件&#xff0c;制作替换等功能。ForkLift 是一…

Linux本地docker一键部署traefik+内网穿透工具实现远程访问Web UI管理界面

文章目录 前言1. Docker 部署 Trfɪk2. 本地访问traefik测试3. Linux 安装cpolar4. 配置Traefik公网访问地址5. 公网远程访问Traefik6. 固定Traefik公网地址 前言 Trfɪk 是一个云原生的新型的 HTTP 反向代理、负载均衡软件&#xff0c;能轻易的部署微服务。它支持多种后端 (D…

代码随想录算法训练营第24天|77. 组合

JAVA代码编写 77. 组合 给定两个整数 n 和 k&#xff0c;返回范围 [1, n] 中所有可能的 k 个数的组合。 你可以按 任何顺序 返回答案。 示例 1&#xff1a; 输入&#xff1a;n 4, k 2 输出&#xff1a; [[2,4],[3,4],[2,3],[1,2],[1,3],[1,4], ]示例 2&#xff1a; 输入…

HP惠普光影精灵7笔记本Victus by HP 16.1英寸游戏本16-d0000原装出厂Windows11.21H2预装OEM系统

下载链接&#xff1a;https://pan.baidu.com/s/1LGNeQR1AF1XBJb5kfZca5w?pwdhwk6 提取码&#xff1a;hwk6 可适用的型号&#xff1a; 16-d0111tx&#xff0c;16-d0112tx&#xff0c;16-d0125tx&#xff0c;16-d0127tx&#xff0c;16-d0128tx&#xff0c;16-d0129tx&#…

【js作用域】JavaScript中作用域的是什么?:从编译时其承担什么角色和查询作用域中的变量的角度解析作用域

&#x1f601; 作者简介&#xff1a;一名大四的学生&#xff0c;致力学习前端开发技术 ⭐️个人主页&#xff1a;夜宵饽饽的主页 ❔ 系列专栏&#xff1a;JavaScript进阶指南 &#x1f450;学习格言&#xff1a;成功不是终点&#xff0c;失败也并非末日&#xff0c;最重要的是继…

Python语言这么火热,其实具有以下特点

Python语言具有以下特点&#xff1a; 简单易学&#xff1a;Python语言是一种解释型语言&#xff0c;语法简单明了&#xff0c;代码简洁&#xff0c;易于理解&#xff0c;可以一边编码一边运行&#xff0c;非常合适编程初学者。门槛较低&#xff1a;Python不需要复杂的环境配置…