037、目标检测-算法速览

之——常用算法速览

目录

之——常用算法速览

杂谈

正文

1.区域卷积神经网络 - R-CNN

2.单发多框检测SSD,single shot detection

3.yolo


杂谈

        快速过一下目标检测的各类算法。


正文

1.区域卷积神经网络 - R-CNN

        region_based CNN,奠基性的工作。

        选择锚框是一个较为复杂的算法,来自于神经网络还没发展的时候;启发式算法选择出锚框后,每一个锚框当做一个图片,然后用预训练好的CNN抽取特征;然后训练SVM用来分类,训练一个回归模型来预测边缘框,具体是:

  1. 将每个提议区域的特征连同其标注的类别作为一个样本。训练多个支持向量机对目标分类,其中每个支持向量机用来判断样本是否属于某一个类别;

  2. 将每个提议区域的特征连同其标注的边界框作为一个样本,训练线性回归模型来预测真实边界框。

         然而锚框的选择大小与比例是不一定的,这种情况下如何生成规则的训练batch呢,于是提出了RoI(region of interest),兴趣区域池化:

         这个方法不会严格均匀地切割,而是会尽量按比例切割满足最后输出,看对应颜色:

         

        Fast RCNN:

        对于RCNN的加强,主要的改进是直接对整张图片抽特征而不是对锚框抽特征:

        R-CNN的主要性能瓶颈在于,对每个提议区域,卷积神经网络的前向传播是独立的,而没有共享计算。 由于这些区域通常有重叠,独立的特征抽取会导致重复的计算。 Fast R-CNN 对R-CNN的主要改进之一,是仅在整张图象上执行卷积神经网络的前向传播。

         搜到锚框之后再映射到CNN之后的feature map上:

        再把特征图上的ROI展平投入到全连接层进行预测。 

       

        Faster R-CNN:

        更进一步的改进是:

        为了较精确地检测目标结果,Fast R-CNN模型通常需要在选择性搜索中生成大量的提议区域。 Faster R-CNN 提出将选择性搜索替换为区域提议网络(region proposal network),从而减少提议区域的生成数量,并保证目标检测的精度。

        二分类预测锚框合理与不合理:

         

        Mask R-CNN:

        如果有像素级别的标号就用FCN来处理,提升原有的性能;roi pooling改为了roi align以避免像素级的误差:

                 比较贵,实用性不高:


2.单发多框检测SSD,single shot detection

        单发步枪,只跑一遍,不需要两个网络。

        生成锚框的办法:

        然后的操作:

        多个分辨率下去锚框然后用算法预测类别和边界框,参考上面RCNN的预测方法。

        性能,更快但没那么准:

         主要原因应该是没有什么改进?


3.yolo

        you only live once:

         you only look once:

        每个锚框预测了多个边缘框,因为这样均匀分割的锚框可能会同时挨到多个真实边缘框。

        后续通过细节改进进行提升,比如引入数据集真实框的先验知识之类的。 

        YOLO(You Only Look Once)是一种流行的实时目标检测系统,可以在图像或视频流中检测多个物体。YOLO的关键思想是将图像分成网格,并为每个网格单元预测边界框和类别概率。这使得YOLO能够在神经网络的单次前向传递中对多个物体进行预测,从而具有高效的计算能力。

YOLO算法的主要步骤包括:

  1. 输入图像:

    • YOLO接收输入图像并将其划分为网格。
  2. 网格划分:

    • 将图像划分为一个 S x S 的网格。每个网格单元负责预测对象,如果对象的中心落入该单元,则该单元负责预测该对象。
  3. 边界框预测:

    • 每个网格单元预测多个边界框,同时预测它们的置信度分数。这些边界框由(x,y,w,h)表示,其中(x,y)是边界框的中心,(w,h)是宽度和高度。
  4. 类别预测:

    • 每个边界框预测对象的不同类别的概率。
  5. 物体置信度分数:

    • YOLO为每个边界框预测一个物体置信度分数,表示该框内存在物体的可能性。
  6. 非极大值抑制:

    • 在进行预测后,会应用一种后处理步骤称为非极大值抑制,以过滤重复或低置信度的预测结果。它保留最有信心的预测结果并删除重叠显著的预测。
  7. 输出:

    • 最终输出是一个边界框列表,每个边界框关联着一个类别标签和置信度分数。

        YOLO已经推出了几个版本,通过提高准确性和速度进行改进。一些知名的版本包括YOLOv1,YOLOv2(YOLO9000),YOLOv3和YOLOv4。每个版本都引入了架构改进,并解决了目标检测中的特定挑战。

        值得注意的是,由于其实时处理能力,YOLO被广泛应用于自动驾驶车辆、监控和机器人等各种应用领域。YOLO的实现可在流行的深度学习框架(如TensorFlow和PyTorch)中找到,使其对研究人员和开发人员更易于接触和使用。

 


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/193321.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vscode pandas无法使用

一、代码内容 import csv csv_reader csv.reader(open("data.csv")) for row in csv_reader:print(row) print(row[2]) 二、错误提示 ModuleNotFoundError: No module named pandas 三、安装pandas 然后我安装pandas,因为我的python的版本是python …

【算法挨揍日记】day31——673. 最长递增子序列的个数、646. 最长数对链

673. 最长递增子序列的个数 673. 最长递增子序列的个数 题目解析: 给定一个未排序的整数数组 nums , 返回最长递增子序列的个数 。 注意 这个数列必须是 严格 递增的。 解题思路: 算法思路: 1. 状态表⽰: 先尝试…

理论与实践相结合之Cisco Packet Tracer网络模拟器安装教程

简介 Packet Tracer是由思科设计的跨平台可视化仿真工具,它允许用户创建网络拓扑以模仿计算机网络和使用命令行界面来模拟配置思科路由器和交换机。Packet Tracer的用户界面为拖放式,允许用户根据自己的需要添加和删除模拟的网络设备。 Packet Tracer很…

电商平台革新:食派士小程序的无代码开发与广告推广集成

食派士小程序:无代码开发的连接神器 食派士小程序,作为上海食派士商贸发展有限公司的专利产品,是一种凭借无代码开发,就能实现与各种系统的连接和集成的电商解决方案。它采用无代码开发的方式,避免了API开发的复杂过程…

fusion 360制作机械臂

参考教程:Industrial Robot ( PART - 5) - FUSION 360 TUTORIAL_哔哩哔哩_bilibili

UE 程序化网格 计算横截面 面积

首先在构造函数内加上程序化网格,然后复制网格体到程序化网格组件上,将Static Mesh(类型StaticMeshActor)的静态网格体组件给到程序化网格体上 然后把StaticMesh(类型为StaticMeshActor)Instance暴漏出去 …

《向量数据库指南》——什么是 向量数据库Milvus Cloud的Range Search?

Range Search 功能诞生于社区。 某天,一位做系统推荐的用户在社区提出了需求,希望 Milvus Cloud 能提供一个新功能,可以返回向量距离在一定范围之内的结果。而这不是个例,开发者在做相似性查询时,经常需要对结果做二次过滤。 为了帮助用户解决这一问题,Milvus Cl…

Flutter笔记:桌面端应用多窗口管理方案

Flutter笔记 桌面端应用多窗口管理方案 作者:李俊才 (jcLee95):https://blog.csdn.net/qq_28550263 邮箱 :291148484163.com 本文地址:https://blog.csdn.net/qq_28550263/article/details/134468587 【简介…

记录-2023/11/18

1. 序列器中可以定义update方法 2. 分页之后前端获取数据的方式要进行改变 JavaScript的switch语法2 situation "a"switch (situation) {case "a":console.log("a")breakcase "b":console.log("b")breakcase "c&quo…

实用小算法

开头提醒: 打开自己本地任意一个SpringBoot项目,复制代码到test包下跟着敲。 后面几篇文章不再提醒,希望大家养成习惯。看10篇文章,不如自己动手做一次。 我们不执着于一天看多少篇,但求把每一篇都搞懂,…

适用于全部安卓手机的 5 大免费 Android 数据恢复

您是否面临这样一种情况,即在Android设备上丢失了一些重要文件,但不知道应该选择哪种Android数据恢复来取回它们? 如果您以前从未备份过Android数据,则很难解决问题。 本文将介绍排名前5位的免费Android数据恢复软件。 您可以获…

Synchronized 关键字的底层原理

目录 synchronized 同步语句块的情况 synchronized 修饰方法的的情况 synchronized 关键字底层原理属于JVM 层面 synchronized 同步语句块的情况 public class SynchronizedDemo {public void method() {synchronized (this) {System.out.println("synchronized 代码块…