SOC设计之 数据回路从 DMA到 FIFO再到BRAM 再到FIFO 再写回DMA
基本没问题的回路设计
从 DMA出发将数据传递到 FIFO 再 写到 自定义的 RTL文件中 再写到 BRAM 再到 自定义的RTL文件 再到 FIFO 再写回DMA
block design 的 设计连接 可以参考我上一个文件的设计
下面介绍两个control1.v
control1.v
//11_11 this is new building for real control11
module control11 #(parameter FIFO_CONTROL1_DATA = 32 ,parameter FIFO_CONTROL1_KEEP = 4 ,parameter ADDRESSA_WIDTH = 17 ,parameter ONECONTROL = 8 ,parameter DINA_WIDTH = 32)(// connect fifoinput sys_clk ,input sys_rst_n ,input [FIFO_CONTROL1_KEEP - 1 : 0] control1_tkeep , // 4input [FIFO_CONTROL1_DATA - 1 : 0] control1_tdata ,input control1_tlast ,output reg control1_tready ,input control1_tvaild ,// next is connect BRAMoutput reg [ADDRESSA_WIDTH - 1 : 0] addressa ,output reg [DINA_WIDTH - 1 : 0] dina ,output reg ena ,output reg wea ,output reg [ADDRESSA_WIDTH : 0] finish);//===================================================================\\// internal signal \\//====================================================================\\//wire [FIFO_CONTROL1_KEEP - 1 : 0] tkeep ;//assign tkeep = control1_tkeep ;// we can use tlast tell me when the send is finish and the last addressa is whatreg [2 : 0] mode ;//reg [DINA_WIDTH - 1 : 0] data_keep ;//reg [ADDRESSA_WIDTH - 1 : 0] addressa_keep ;// how to put control1_tdata and keep together control1_tkeepwire [ONECONTROL - 1 : 0] control1_tdata_0 ; // 7- 0
wire [ONECONTROL - 1 : 0] control1_tdata_1 ; // 15 - 8
wire [ONECONTROL - 1 : 0] control1_tdata_2 ; // 23 - 16
wire [ONECONTROL - 1 : 0] control1_tdata_3 ; // 31 - 24
wire [FIFO_CONTROL1_DATA - 1 : 0] control1_tdata_total ;assign control1_tdata_0 = (control1_tkeep[0] == 1) ? control1_tdata[7 : 0] : 8'b0 ;
assign control1_tdata_1 = (control1_tkeep[1] == 1) ? control1_tdata[15 : 8] : 8'b0 ;
assign control1_tdata_2 = (control1_tkeep[2] == 1) ? control1_tdata[23 : 16] : 8'b0 ;
assign control1_tdata_3 = (control1_tkeep[3] == 1) ? control1_tdata[31 : 24] : 8'b0 ;
assign control1_tdata_total = {control1_tdata_3,control1_tdata_2,control1_tdata_1,control1_tdata_0} ;// we need get the number delay //reg write ;//===================================================================\\// next is main code \\//====================================================================\\
always@(posedge sys_clk or negedge sys_rst_n)beginif(sys_rst_n == 0)begincontrol1_tready <= 1 ;addressa <= 0 ;dina <= 0 ;ena <= 0 ;wea <= 0 ;mode <= 0 ;// write <= 0 ;endelsebegincase(mode)3'b000 :beginif((control1_tvaild && control1_tready && control1_tdata_total) == 0 )beginaddressa <= addressa ;dina <= dina ;ena <= 0 ;wea <= 0 ;mode <= 0 ;// write <= 0 ;endelsebegin// addressa <= addressa ;//dina <= control1_tdata_total ;//ena <= 1 ;// wea <= 1 ;// write <= 0 ;mode <= 3'b001;endend3'b001 : // send addressa and dinabegincontrol1_tready <= 0 ;addressa <= addressa + 4 ;dina <= control1_tdata_total ;ena <= 1 ;wea <= 1 ;// write <= 0 ;mode <= 3'b010 ;end3'b010 :beginif(control1_tlast == 1)beginaddressa <= addressa ;dina <= dina ;ena <= 0 ;wea <= 0 ;mode <= 0 ;// write <= 0 ;endelsebegincontrol1_tready <= 1 ;addressa <= addressa ;dina <= dina ;ena <= 0 ;wea <= 0 ;// write <= 1 ;mode <= 3'b001 ;endenddefault :begincontrol1_tready <= 1 ;addressa <= addressa ;dina <= dina ;ena <= 0 ;wea <= 0 ;mode <= 0 ;endendcase endend// we can use finish send the adress and tlastalways@(posedge sys_clk or negedge sys_rst_n)beginif(sys_rst_n == 0)beginfinish <= 0 ;endelse if(control1_tlast == 1)beginfinish <= {addressa,control1_tlast} ;endelsefinish <= 0 ;end
endmodule
control2.v
// this is 11_11 new building for control22
module control22 #(parameter FINISH_WIDTH = 17 ,parameter DATA_WIDTH = 32 ,parameter TKEEP_WIDTH = 4)(input sys_clk ,input sys_rst_n ,// from control11input [FINISH_WIDTH : 0] finish_control22 ,// connect BRAMoutput reg enb ,output reg [FINISH_WIDTH - 1 : 0] addressb ,input [DATA_WIDTH - 1 : 0] doutb ,// connect FIFOoutput reg [DATA_WIDTH - 1 : 0] tdata ,output reg [TKEEP_WIDTH - 1 : 0] tkeep ,output tlast ,output reg tvaild ,input tready);//===========================================================\\// internal signal \\//===========================================================\\
//assign tkeep = {TKEEP_WIDTH{1'b1}} ;reg [2 : 0] mode ;//reg [FINISH_WIDTH - 1 : 0] addressb_keep ;//===========================================================\\// next is main code \\//============================================================\\// finish_control22// doutb// tready//tlastassign tlast = (addressb >= finish_control22[FINISH_WIDTH : 1] && addressb != 0) ? 1 : 0 ;//assign tvaild = (finish_control22[0] == 1 && (addressb != finish_control22[FINISH_WIDTH : 1])) ? 1 : 0 ;always@(posedge sys_clk or negedge sys_rst_n)beginif(sys_rst_n == 0)beginenb <= 0 ;addressb <= 0 ;tdata <= 0 ;tvaild <= 0 ;mode <= 0 ;tkeep <={TKEEP_WIDTH{1'b0}} ;endelsebegincase(mode)3'b000 :beginif( (tready && finish_control22[0]) == 0)beginenb <= 0 ;tdata <= 0 ;addressb <= addressb ;mode <= 0 ;tvaild <= 0 ;tkeep <={TKEEP_WIDTH{1'b0}} ;endelsebegintvaild <= 1 ;mode <= 3'b001 ;// tlast <=(addressb == finish_control22[FINISH_WIDTH : 1] && addressb != 0) ? 1 : 0 ;//tkeep <={TKEEP_WIDTH{1'b1}} ;endend3'b001 :beginif((tready && tvaild) == 1)begintvaild <= 0 ;enb <= 1 ;addressb <= addressb + 4 ;tdata <= doutb ;tkeep <={TKEEP_WIDTH{1'b1}} ;mode <= 3'b010 ;endelsebeginmode <= 3'b000 ;endend3'b010 :// begin// if(tlast == 1)begin// enb <= 0 ;// addressb <= addressb ;// tdata <= tdata ;// tvaild <= 0 ;// mode <= 3'b010 ;// tkeep <={TKEEP_WIDTH{1'b1}} ;// end// elsebeginenb <= 0 ;addressb <= addressb ;tdata <= tdata ;tvaild <= 1 ;mode <= 3'b001 ;tkeep <={TKEEP_WIDTH{1'b1}} ;end// enddefault :begintvaild <= 0 ;enb <= 0 ;addressb <= addressb ;tdata <= tdata ;mode <= 0 ;tkeep <={TKEEP_WIDTH{1'b0}} ;endendcaseendendendmodule
下面是SDK的 C语言代码
#include "xparameters.h" //包含vivado所导出的信息包含vivado的基地址
#include "xil_printf.h" //调用打印函数的时候,需要引用这个头文件
#include "ff.h" //使用FATFS库函数时需要
#include "xstatus.h" //需要的一些关键信息
#include"stdio.h" // 专业写法
#include "xdevcfg.h"
#include "xil_io.h"
/下面讲述关于 DMA
#include "xaxidma.h"
#include "xparameters.h"
#include "xil_exception.h"
#include "xscugic.h"
#include "sleep.h"/************************** Variable Definitions *****************************/
static FATFS fatfs; //文件系统//#define FILE_NAME "parameter_512_512.txt" //定义文件名
#define FILE_NAME "zxs1.txt"
#define FILE_READ_NAME "zzxxss.txt"static XAxiDma axidma; //XAxiDma实例
static XScuGic intc; //中断控制器的实例
volatile int tx_done; //发送完成标志
volatile int rx_done; //接收完成标志
volatile int error; //传输出错标志/************************** Constant Definitions *****************************/#define DMA_DEV_ID XPAR_AXIDMA_0_DEVICE_ID
#define RX_INTR_ID XPAR_FABRIC_AXIDMA_0_S2MM_INTROUT_VEC_ID
#define TX_INTR_ID XPAR_FABRIC_AXIDMA_0_MM2S_INTROUT_VEC_ID
#define INTC_DEVICE_ID XPAR_SCUGIC_SINGLE_DEVICE_ID
#define DDR_BASE_ADDR XPAR_PS7_DDR_0_S_AXI_BASEADDR //0x00100000
#define MEM_BASE_ADDR (DDR_BASE_ADDR + 0x1000000) //0x01100000
#define TX_BUFFER_BASE (MEM_BASE_ADDR + 0x00100000) //0x01200000
#define RX_BUFFER_BASE (MEM_BASE_ADDR + 0x00700000) //0x01800000
#define RESET_TIMEOUT_COUNTER 100000000 //复位时间
//复位时间设置的如此之长 是为了保证在下面的刷新DMA的用时 虽然我之前小数据只写了1000//#define TEST_START_VALUE 0x0 //测试起始值
//#define MAX_PKT_LEN 0x100 //发送包长度 对应十进制是256 DMA传递的单次包长最大是256
//指的是stream流的包长度 不是突发长度#define MAX_PKT_LEN 5000 //发送包长度 163840
//指的是单次 DMA 传输的包长度 因为数据一共有 16384 × 8 再加上 转#define len 5000 //传输数据的大小//函数声明
int platform_init_fs();
int sd_mount() ; // 挂载SD卡
int sd_write_data(char *file_name,u32 src_addr,u32 byte_len); //SD卡写数据
int sd_read_data(char *file_name,u32 src_addr,u32 byte_len) ; //SD卡读数据
static void tx_intr_handler(void *callback);
static void rx_intr_handler(void *callback);
static int setup_intr_system(XScuGic * int_ins_ptr, XAxiDma * axidma_ptr,u16 tx_intr_id, u16 rx_intr_id);
static void disable_intr_system(XScuGic * int_ins_ptr, u16 tx_intr_id,u16 rx_intr_id);// main函数
int main()
{int status; // 当前状态int i = 0 ; // 传递函数使用的顺序i tint t = 0 ;u32 value = 0 ;u32 *tx_buffer_ptr;u32 *rx_buffer_ptr;XAxiDma_Config *config;tx_buffer_ptr = (u32 *) TX_BUFFER_BASE;rx_buffer_ptr = (u32 *) RX_BUFFER_BASE;// 如果分配成功:则返回指向被分配内存空间的指针,不然返回指针NULL 。同时,当内存不再使用的时候,应使用free()函数将内存块释放掉。// 关于:void*,表示未确定类型的指针,c,//c++规定void*可以强转为任何其他类型的指针,关于void还有一种说法就是其他任何类型都可以直接赋值给它,无需进行强转,但是反过来不可以 。//它被用来在运行时而不是编译时分配内存。因此,如果您的数据数组基于来自用户,数据库,文件等的某种输入,那么一旦知道所需大小,就必须使用malloc。//malloc 在堆上开辟空间char *ch_data = NULL; //SD卡读到的数据char *ddr_rd_data = NULL; //重新写回SD卡的数据ch_data = malloc(len);if(ch_data == NULL) printf("ERRIOR \r\n");ddr_rd_data = malloc(len);if(ddr_rd_data == NULL) printf("ERRIOR \r\n");
// 两个东西 一个 放 开始内容 另一个 写结束//常规status = sd_mount(); //挂载SD卡----调用函数///if(status != XST_SUCCESS){xil_printf("Failed to open SD card!\n");return 0;}elsexil_printf("Success to open SD card!\n");//为了展示效果 我决定写一下sd卡//len = strlen(src_str); //计算字符串长度//SD卡写数据//sd_write_data(FILE_NAME,(u32)src_str,len);sd_read_data(FILE_NAME,(u32)ch_data,len);//printf("Successful write SD in Pc ! \r\n");usleep(1);// sd_read_data(FILE_NAME,(u32)dest_str,len); //读数据进入dest_str//printf("Successful Read SD ! \r\n");//到目前我们已经把数据放到了dest_str// 写数据for(i=0; i<len; i++){Xil_Out32(TX_BUFFER_BASE+i*4,ch_data[i]);}i=0;usleep(1);//读数据printf("Successful Write SD in DDR! \r\n");xil_printf("--- Entering main() --- \r\n");printf("DMA initialization succeeded ! \r\n");config = XAxiDma_LookupConfig(DMA_DEV_ID); //查找DMA的配置信息if (!config) {xil_printf("No config found for %d\r\n", DMA_DEV_ID);return XST_FAILURE;}//初始化DMA引擎status = XAxiDma_CfgInitialize(&axidma, config);if (status != XST_SUCCESS) {xil_printf("Initialization failed %d\r\n", status);return XST_FAILURE;}if (XAxiDma_HasSg(&axidma)) {xil_printf("Device configured as SG mode \r\n");return XST_FAILURE;}status = setup_intr_system(&intc, &axidma, TX_INTR_ID, RX_INTR_ID);if (status != XST_SUCCESS) {xil_printf("Failed intr setup\r\n");return XST_FAILURE;}//初始化标志信号tx_done = 0;rx_done = 0;error = 0;usleep(10);//数据地址都确定了Xil_DCacheFlushRange((UINTPTR)(tx_buffer_ptr), len); //刷新Data Cache
// may be this is wrongprintf("DDR send Read data5 \n");status = XAxiDma_SimpleTransfer(&axidma, (u32) (tx_buffer_ptr),len, XAXIDMA_DMA_TO_DEVICE);if (status != XST_SUCCESS) {return XST_FAILURE;}Xil_DCacheFlushRange((UINTPTR) (tx_buffer_ptr), len); //刷新Data Cacheprintf("DDR send Read data6 \n");usleep(10) ;//DMA写通道开启status = XAxiDma_SimpleTransfer(&axidma, (u32) (rx_buffer_ptr),len, XAXIDMA_DEVICE_TO_DMA);首先是器件例化的指针 ,起始或目的地址 ,传输长度 , DMA传输方向if (status != XST_SUCCESS) {return XST_FAILURE;}printf("DDR send Read data7 \n");Xil_DCacheFlushRange((UINTPTR) (rx_buffer_ptr), len); //刷新Data Cachewhile (!tx_done && !rx_done && !error);printf("DDR get Read data \n");//传输出错if (error) {xil_printf("Failed test transmit%s done, ""receive %s done\r\n", tx_done ? "" : "tx_done not",rx_done ? "" : "rx_done not");goto Done;}usleep(10000);//传输完成,检查数据是否正确xil_printf("Successfully ran AXI DMA Loop\r\n");disable_intr_system(&intc, TX_INTR_ID, RX_INTR_ID);Done: xil_printf("--- Exiting main() --- \r\n");for(i=0; i<len; i++){value = Xil_In32(RX_BUFFER_BASE+i*4);ddr_rd_data[t] = value;t++;}
usleep(1);sd_write_data(FILE_READ_NAME,(u32)ddr_rd_data,len);printf("SD Write Successfully ! \r\n");free(ch_data);free(ddr_rd_data);return XST_SUCCESS;
}//初始化文件系统
int platform_init_fs()
{FRESULT status;TCHAR *Path = "0:/";BYTE work[FF_MAX_SS];//注册一个工作区(挂载分区文件系统)//在使用任何其它文件函数之前,必须使用f_mount函数为每个使用卷注册一个工作区status = f_mount(&fatfs, Path, 1); //挂载SD卡if (status != FR_OK) {xil_printf("Volume is not FAT formated; formating FAT\r\n");//格式化SD卡status = f_mkfs(Path, FM_FAT32, 0, work, sizeof work);if (status != FR_OK) {xil_printf("Unable to format FATfs\r\n");return -1;}//格式化之后,重新挂载SD卡status = f_mount(&fatfs, Path, 1);if (status != FR_OK) {xil_printf("Unable to mount FATfs\r\n");return -1;}}return 0;
}//挂载SD(TF)卡
int sd_mount()
{FRESULT status;//初始化文件系统(挂载SD卡,如果挂载不成功,则格式化SD卡)status = platform_init_fs();if(status){xil_printf("ERROR: f_mount returned %d!\n",status);return XST_FAILURE;}return XST_SUCCESS;
}//SD卡写数据
int sd_write_data(char *file_name,u32 src_addr,u32 byte_len)
{FIL fil; //文件对象UINT bw; //f_write函数返回已写入的字节数//打开一个文件,如果不存在,则创建一个文件f_open(&fil,file_name,FA_CREATE_ALWAYS | FA_WRITE);//移动打开的文件对象的文件读/写指针 0:指向文件开头f_lseek(&fil, 0);//向文件中写入数据f_write(&fil,(void*) src_addr,byte_len,&bw);//关闭文件f_close(&fil);return 0;
}//SD卡读数据
int sd_read_data(char *file_name,u32 src_addr,u32 byte_len)
{FIL fil; //文件对象UINT br; //f_read函数返回已读出的字节数//打开一个只读的文件f_open(&fil,file_name,FA_READ);//移动打开的文件对象的文件读/写指针 0:指向文件开头f_lseek(&fil,0);//从SD卡中读出数据f_read(&fil,(void*)src_addr,byte_len,&br);//关闭文件f_close(&fil);return 0;
}//DMA TX中断处理函数
static void tx_intr_handler(void *callback)
{int timeout;u32 irq_status;XAxiDma *axidma_inst = (XAxiDma *) callback;//读取待处理的中断irq_status = XAxiDma_IntrGetIrq(axidma_inst, XAXIDMA_DMA_TO_DEVICE);//确认待处理的中断XAxiDma_IntrAckIrq(axidma_inst, irq_status, XAXIDMA_DMA_TO_DEVICE);//Tx出错if ((irq_status & XAXIDMA_IRQ_ERROR_MASK)) {error = 1;XAxiDma_Reset(axidma_inst);timeout = RESET_TIMEOUT_COUNTER;while (timeout) {if (XAxiDma_ResetIsDone(axidma_inst))break;timeout -= 1;}return;}//Tx完成if ((irq_status & XAXIDMA_IRQ_IOC_MASK))tx_done = 1;
}//DMA RX中断处理函数
static void rx_intr_handler(void *callback)
{u32 irq_status;int timeout;XAxiDma *axidma_inst = (XAxiDma *) callback;irq_status = XAxiDma_IntrGetIrq(axidma_inst, XAXIDMA_DEVICE_TO_DMA);XAxiDma_IntrAckIrq(axidma_inst, irq_status, XAXIDMA_DEVICE_TO_DMA);//Rx出错if ((irq_status & XAXIDMA_IRQ_ERROR_MASK)) {error = 1;XAxiDma_Reset(axidma_inst);timeout = RESET_TIMEOUT_COUNTER;while (timeout) {if (XAxiDma_ResetIsDone(axidma_inst))break;timeout -= 1;}return;}//Rx完成if ((irq_status & XAXIDMA_IRQ_IOC_MASK))rx_done = 1;
}//建立DMA中断系统
// @param int_ins_ptr是指向XScuGic实例的指针
// @param AxiDmaPtr是指向DMA引擎实例的指针
// @param tx_intr_id是TX通道中断ID
// @param rx_intr_id是RX通道中断ID
// @return:成功返回XST_SUCCESS,否则返回XST_FAILURE
static int setup_intr_system(XScuGic * int_ins_ptr, XAxiDma * axidma_ptr,u16 tx_intr_id, u16 rx_intr_id)
{int status;XScuGic_Config *intc_config;//初始化中断控制器驱动intc_config = XScuGic_LookupConfig(INTC_DEVICE_ID);if (NULL == intc_config) {return XST_FAILURE;}status = XScuGic_CfgInitialize(int_ins_ptr, intc_config,intc_config->CpuBaseAddress);if (status != XST_SUCCESS) {return XST_FAILURE;}//设置优先级和触发类型XScuGic_SetPriorityTriggerType(int_ins_ptr, tx_intr_id, 0xA0, 0x3);XScuGic_SetPriorityTriggerType(int_ins_ptr, rx_intr_id, 0xA0, 0x3);//为中断设置中断处理函数status = XScuGic_Connect(int_ins_ptr, tx_intr_id,(Xil_InterruptHandler) tx_intr_handler, axidma_ptr);if (status != XST_SUCCESS) {return status;}status = XScuGic_Connect(int_ins_ptr, rx_intr_id,(Xil_InterruptHandler) rx_intr_handler, axidma_ptr);if (status != XST_SUCCESS) {return status;}XScuGic_Enable(int_ins_ptr, tx_intr_id);XScuGic_Enable(int_ins_ptr, rx_intr_id);//启用来自硬件的中断Xil_ExceptionInit();Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT,(Xil_ExceptionHandler) XScuGic_InterruptHandler,(void *) int_ins_ptr);Xil_ExceptionEnable();//使能DMA中断XAxiDma_IntrEnable(&axidma, XAXIDMA_IRQ_ALL_MASK, XAXIDMA_DMA_TO_DEVICE);XAxiDma_IntrEnable(&axidma, XAXIDMA_IRQ_ALL_MASK, XAXIDMA_DEVICE_TO_DMA);return XST_SUCCESS;}//此函数禁用DMA引擎的中断
static void disable_intr_system(XScuGic * int_ins_ptr, u16 tx_intr_id,u16 rx_intr_id)
{XScuGic_Disconnect(int_ins_ptr, tx_intr_id);XScuGic_Disconnect(int_ins_ptr, rx_intr_id);
}