NOIP2015提高组第二轮T1:能量项链

题目链接

[NOIP2006 提高组] 能量项链

题目描述

在 Mars 星球上,每个 Mars 人都随身佩带着一串能量项链。在项链上有 N N N 颗能量珠。能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记。因为只有这样,通过吸盘(吸盘是 Mars 人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。如果前一颗能量珠的头标记为 m m m,尾标记为 r r r,后一颗能量珠的头标记为 r r r,尾标记为 n n n,则聚合后释放的能量为 m × r × n m \times r \times n m×r×n(Mars 单位),新产生的珠子的头标记为 m m m,尾标记为 n n n

需要时,Mars 人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。

例如:设 N = 4 N=4 N=4 4 4 4 颗珠子的头标记与尾标记依次为 ( 2 , 3 ) ( 3 , 5 ) ( 5 , 10 ) ( 10 , 2 ) (2,3)(3,5)(5,10)(10,2) (2,3)(3,5)(5,10)(10,2)。我们用记号 ⊕ \oplus 表示两颗珠子的聚合操作, ( j ⊕ k ) (j \oplus k) (jk) 表示第 j , k j,k j,k 两颗珠子聚合后所释放的能量。则第 4 4 4 1 1 1 两颗珠子聚合后释放的能量为:

( 4 ⊕ 1 ) = 10 × 2 × 3 = 60 (4 \oplus 1)=10 \times 2 \times 3=60 (41)=10×2×3=60

这一串项链可以得到最优值的一个聚合顺序所释放的总能量为:

( ( ( 4 ⊕ 1 ) ⊕ 2 ) ⊕ 3 ) = 10 × 2 × 3 + 10 × 3 × 5 + 10 × 5 × 10 = 710 (((4 \oplus 1) \oplus 2) \oplus 3)=10 \times 2 \times 3+10 \times 3 \times 5+10 \times 5 \times 10=710 (((41)2)3)=10×2×3+10×3×5+10×5×10=710

输入格式

第一行是一个正整数 N N N 4 ≤ N ≤ 100 4 \le N \le 100 4N100),表示项链上珠子的个数。第二行是 N N N 个用空格隔开的正整数,所有的数均不超过 1000 1000 1000。第 i i i 个数为第 i i i 颗珠子的头标记( 1 ≤ i ≤ N 1 \le i \le N 1iN),当 i < N i<N i<N 时,第 i i i 颗珠子的尾标记应该等于第 i + 1 i+1 i+1 颗珠子的头标记。第 N N N 颗珠子的尾标记应该等于第 1 1 1 颗珠子的头标记。

至于珠子的顺序,你可以这样确定:将项链放到桌面上,不要出现交叉,随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序。

输出格式

一个正整数 E E E E ≤ 2.1 × 1 0 9 E\le 2.1 \times 10^9 E2.1×109),为一个最优聚合顺序所释放的总能量。

样例 #1

样例输入 #1

4
2 3 5 10

样例输出 #1

710

算法思想

根据题目描述,测试样例的合并过程如下:
在这里插入图片描述
由于只能合并相邻两个珠子,因此可以使用区间型动态规划的思想进行处理。

状态表示

f [ i ] [ j ] f[i][j] f[i][j]表示从第 i i i颗珠子一直合并到第 j j j颗珠子释放的最大能量

状态计算

从最小的聚合长度 2 2 2开始计算,以每次聚合为阶段,枚举聚合的起点,根据最后一次聚合的位置可以分为下面几种情况:

  • 最后一次在 i i i位置聚合,即将第 i i i颗珠子和后面的 [ i + 1... j ] [i+1...j] [i+1...j]珠子聚合,得到的分数为 f [ i ] [ i ] + f [ i + 1 ] [ j ] + s [ i ] × s [ i + 1 ] × r [ j ] f[i][i]+f[i+1][j]+s[i]\times s[i+1]\times r[j] f[i][i]+f[i+1][j]+s[i]×s[i+1]×r[j]

  • 最后一次在 i + 1 i+1 i+1位置聚合,即将前面的 [ i . . . i + 1 ] [i...i+1] [i...i+1]颗珠子和后面的 [ i + 2... j ] [i+2...j] [i+2...j]颗珠子聚合,得到的分数为 f [ i ] [ i + 1 ] + f [ i + 2 ] [ j ] + s [ i ] × s [ i + 2 ] × r [ j ] f[i][i+1]+f[i+2][j]+s[i]\times s[i+2]\times r[j] f[i][i+1]+f[i+2][j]+s[i]×s[i+2]×r[j]

  • 最后一次在 k k k位置聚合,即将前面的 [ i . . . k ] [i...k] [i...k]颗珠子和后面的 [ k + 1... j ] [k+1...j] [k+1...j]颗珠子聚合,得到的分数为 f [ i ] [ i + k ] + f [ k + 1 ] [ j ] + s [ i ] × s [ k + 1 ] × r [ j ] f[i][i+k]+f[k+1][j]+s[i]\times s[k+1]\times r[j] f[i][i+k]+f[k+1][j]+s[i]×s[k+1]×r[j]

  • 最后一次在 j − 1 j-1 j1位置聚合,即将前面的 [ i . . . j − 1 ] [i...j-1] [i...j1]颗珠子和第 j j j颗珠子聚合,得到的分数为 f [ i ] [ j − 1 ] + f [ j ] [ j ] + s [ i ] × s [ j ] × r [ j ] f[i][j-1]+f[j][j]+s[i]\times s[j]\times r[j] f[i][j1]+f[j][j]+s[i]×s[j]×r[j]

f [ i ] [ j ] f[i][j] f[i][j]为以上情况的最大值。其中 s [ i ] s[i] s[i]表示第 i i i颗能量珠的头标记, r [ j ] r[j] r[j]表示第 j j j颗能量珠的尾标记, s [ i ] × s [ j ] × r [ j ] s[i]\times s[j]\times r[j] s[i]×s[j]×r[j]表示将两堆能量珠聚合释放的能量。

初始状态

  • 为计算最大值 f [ i ] [ j ] f[i][j] f[i][j]应初始化 0 0 0
  • f [ i ] [ i ] f[i][i] f[i][i]表示合并1堆,无效状态也应初始化为 0 0 0

除此之外,由于可以随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序,也就是说可以从任何一点出发进行合并。因此,需要采用拆环为链的方式进行处理,最后求以任意起点开始求释放能量的最大值。

时间复杂度

状态数为 n × n n\times n n×n,状态计算时需要枚举最后一次合并位置,因此时间复杂度为 O ( n 3 ) O(n^3) O(n3)

代码实现

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 210;
int f[N][N];
//s[i]表示第i颗珠子的头标记,r[i]表示尾标记
int s[N], r[N];
int main()
{int n;cin >> n;for(int i = 1; i <= n; i ++) {cin >> s[i];s[i + n] = s[i]; //拆环为链}//处理尾标记for(int i = 1; i < 2 * n; i ++) r[i] = s[i + 1];//枚举聚合长度for(int len = 2; len <= n; len ++){//枚举聚合起点for(int i = 1; i + len - 1 <= n * 2; i ++){int j = i + len - 1; //聚合的结束位置//枚举聚合位置for(int k = i; k < j; k ++)f[i][j] = max(f[i][j], f[i][k] + f[k + 1][j] + s[i] * s[k + 1] * r[j]);}}//求以任一点为起点的最大值int ans = 0;for(int i = 1; i <= n; i ++)ans = max(ans, f[i][i + n - 1]);cout << ans;return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/205406.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

悄悄上线:CSS @starting-style 新规则

最近 Chrome 117&#xff0c;CSS 又悄悄推出了一个新的的规则&#xff0c;叫做starting-style。从名称上来看&#xff0c;表示定义初始样式。那么&#xff0c;具体是做什么的&#xff1f;有什么用&#xff1f;一起了解一下吧 一、快速了解 starting-style 通常做一个动画效果…

OpenLayers入门,OpenLayers6的WebGLPointsLayer图层样式和运算符详解,四种symbolType类型案例

专栏目录: OpenLayers入门教程汇总目录 前言 本章讲解使用OpenLayers6的WebGL图层显示大量点情况下,列举出所有WebGLPointsLayer图层所支持的所有样式运算符大全。 补充说明 本篇主要介绍OpenLayers6.x版本的webgl图层,OpenLayers7.x和OpenLayers8.x主要更新内容就是webgl…

NEJM一篇新文为例,聊聊孟德尔随机化研究mr

2019年3月14日&#xff0c;新英格兰医学杂志发表了一篇论著&#xff0c;Mendelian Randomization Study of ACLY and Cardiovascular disease, 即《ACLY和心血管疾病的孟德尔随机化研究》。与小咖在2017年1月9日报道的一篇发表在新英格兰医学的孟德尔随机化研究——精读NEJM&am…

英国国家量子计算中心与IBM签署重要协议!英国进入实用量子时代

​&#xff08;图片来源&#xff1a;网络&#xff09; 近日&#xff0c;英国国家量子计算中心&#xff08;NQCC&#xff09;与IBM达成了一项重要协议。根据该协议&#xff0c;NQCC将为英国研究人员提供IBM量子高级计划的云访问权限&#xff0c;其中包括IBM的量子计算系统舰队。…

溅射沉积镍薄膜的微观结构和应力演化

引言 众所周知&#xff0c;材料的宏观性质&#xff0c;例如硬度、热和电传输以及光学描述符与其微观结构特征相关联。通过改变加工参数&#xff0c;可以改变微结构&#xff0c;从而能够控制这些性质。在薄膜沉积的情况下&#xff0c;微结构特征&#xff0c;例如颗粒尺寸和它们…

MyBatis Generator 插件 详解自动生成代码

MyBatis Generator&#xff08;MBG&#xff09;是MyBatis和iBATIS的代码生成器。可以生成简单CRUD操作的XML配置文件、Mapper文件(DAO接口)、实体类。实际开发中能够有效减少程序员的工作量&#xff0c;甚至不用程序员手动写sql。 它将为所有版本的MyBatis以及版本2.2.0之后的i…

寄存器、缓存、内存之间的关系和区别

https://blog.csdn.net/m0_46761060/article/details/124689209 目录 关系1、寄存器2、缓存&#xff08;Cache&#xff09; 2.1、寄存器和缓存的区别2.2、一级缓存和二级缓存3、内存 3.1、只读存储器 ROM&#xff08;Read Only Memory&#xff09;3.2、随机存储器 RAM&#xf…

光量子计算再创融资高峰!法国 Quandela获投5000万欧元

​&#xff08;图片来源&#xff1a;网络&#xff09; 法国光量子计算公司Quandela致力于开发首台光量子计算机&#xff0c;目前已获得超过5,000万欧元的巨额融资。投资者包括通过“法国2030计划”获得的法国政府支持以及银行合作伙伴、个人。新的投资者包括法国投资公司Seren…

dedecms标签

【Arclist 标记】这个标记是DedeCms最常用的一个标记&#xff0c;也叫自由列表标记&#xff0c;其中 hotart、coolart、likeart、artlist、imglist、imginfolist、specart、autolist 这些标记都是由这个标记所定义的不同属性延伸出来的别名标记。功能说明&#xff1a;获取指定的…

RFID读写器在物联网中的应用与优势

随着物联网技术的不断发展&#xff0c;RFID读写器作为物联网感知层的重要组成部分&#xff0c;在各个领域得到了广泛应用。本文将介绍RFID读写器在物联网中的应用及优势。 一、RFID读写器概述 RFID&#xff08;Radio Frequency Identification&#xff09;技术是一种利用无线…

多维数据下的业绩爆发潜力,每家门店都要进行数字化

“你的门店近期运营情况如何&#xff1f;” 面对这个问题&#xff0c;最直接的回答是门店营收数字。但如果再深入一步询问&#xff1a;这个月业绩增长或下滑是出于什么原因&#xff1f;有哪些数据支撑你的判断&#xff1f;恐怕很多人未必能够拿出切实可靠的数据。 而如果再进一…

51单片机PWM控制LED灯渐明渐暗实验

51单片机PWM控制LED灯渐明渐暗实验 1.概述 这篇文章介绍单片机的PWM通过占空比控制LED灯的渐明渐暗效果&#xff0c;通过该实验掌握PWM的原理以及应用它做一些事情。 2.操作步骤 2.1.硬件电路 1.硬件准备 名称型号数量单片机STC12C20521LED彩灯无2晶振12MHZ1电容30pf2电阻…