每日一练:“打家劫舍“(House Robber)问题 I

在这里插入图片描述

1. 问题

  假设有一排房屋,每个房屋里都存放着一定数量的财宝。相邻的房屋装有相互连通的防盗系统,如果两个相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
  求解的问题是,小偷在不触发警报的情况下,一晚上最多能偷到多少财宝。

2. 解题思路(状态转移方程)

2.1 状态转移方程

  状态转移方程是系统动力学中描述系统状态随时间演变的数学方程。这种方程通常用来表示系统的状态如何从一个时间点转移到下一个时间点。在控制理论、物理系统建模、经济学等领域,状态转移方程是非常常见且重要的概念。
  一般而言,状态转移方程可以用如下的形式表示:
在这里插入图片描述
  ·x(t)是系统在时间t的状态向量。
  ·u(t)是在时间t的输入向量。
  ·A是状态转移矩阵,描述系统状态如何随时间演变。
  ·B是输入矩阵,描述输入如何影响状态的演变。
  这个方程表示系统在下一个时间点的状态x(t+1)是当前状态x(t)通过矩阵A的变换加上输入u(t)通过矩阵B的变换得到的。
  在一些应用中,状态转移方程也可能包含时间的影响、随机扰动等因素,具体形式可能会更加复杂。

2.2 解题思路

  为了应用状态转移方程解决这个问题,可以将问题抽象成一个动态规划问题,其中状态表示小偷在每个房屋处的状态。假设有n个房屋,用f()表示小偷在第个房屋时能够获得的最大财物价值。状态转移方程可以表示为:
在这里插入图片描述
  f(i)是在第个房屋时能够获得的最大财物价值价值[i是第我个房屋中的财物价值。
  f(i-1)表示小偷选择不盗窃当前房屋,所以能够获得的最大财物价值与前一个房屋的最大财物价值相同。
  F(i-2)+value[i]表示小偷选择盗窃当前房屋,所以能够获得的最大财物价值为前两个房屋的最大财物价值加上当前房屋的财物价值。
  这个状态转移方程反映了一个典型的动态规划问题,通过递推求解,可以找到小偷在整个房屋序列中能够获得的最大财物价值。这个问题的动态规划解法避免了重复计算,提高了效率

3. 代码设计思路

  问题表述:给定一个整数数组 nums,表示每个房屋中的财宝数量,小偷在不触发警报的情况下,一晚上最多能偷到多少财宝。
  例如,给定 nums = [1, 2, 3, 1],表示有四个房屋,分别存放着 1、2、3、1 单位的财宝。如果小偷选择偷窃第1号和第3号房屋,那么最终能偷到的财宝最大,为 1 + 3 = 4。
  这个问题可以用动态规划来解决。设 dp[i] 表示在前 i 个房屋中能偷到的最大财宝数量。对于第 i 个房屋,小偷有两个选择:要么偷这个房屋,要么不偷。如果偷第 i 个房屋,那么最大财宝数量就是前 i-2 个房屋的最大财宝数量加上第 i 个房屋中的财宝数量。如果不偷第 i 个房屋,那么最大财宝数量就是前 i-1 个房屋的最大财宝数量。因此,可以得到状态转移方程:
在这里插入图片描述

3. 代码实现

def rob(nums):# 如果房屋为空,则返回0if not nums:return 0# 如果只有一个房屋,则抢劫该房屋if len(nums) == 1:return nums[0]# 初始化一个列表,用于保存房屋的最大抢劫金额# dp[i] 表示在前i个房屋中能够抢到的最大金额dp = [0] * len(nums)# 初始化前两个房屋的最大抢劫金额dp[0] = nums[0]dp[1] = max(nums[0], nums[1])# 从第三个房屋开始计算最大抢劫金额for i in range(2, len(nums)):# 动态规划递推公式:dp[i] = max(dp[i-1], dp[i-2] + nums[i])dp[i] = max(dp[i-1], dp[i-2] + nums[i])# 返回最后一个房屋的最大抢劫金额return dp[-1]# 示例
nums = [2, 7, 9, 3, 1]
result = rob(nums)
print(result)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/206703.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

B站已经部分上线前台实名,如不同意实名,后期账号流量将收影响!

B站部分百万粉丝博主的主页显示账号运营人名字的政策是从10月31日开始的。当天,B站官方发布了《哔哩哔哩关于头部“自媒体”账号前台实名的公告》,表明了其前台实名制的实施计划。 B站部分上线前台实名的过程可以追溯到2021年。当时,中国政府…

【Python】学习Python面向对象编程的疑问

(Java菜鸟来学Python了) 🤔 1. 静态方法与类方法什么区别? 实例方法只能被实例对象调用(Python3 中,如果类调用实例方法,需要显示的传self, 也就是实例对象自己),静态方法(由staticmethod装饰…

13、深度学习之神经网络

深度学习是机器学习中重要的一个学科分支,它的特点就在于需要构建多层“深度”的神经网络。 人们在探索人工智能初期,就曾设想构建一个用数学方式来表达的模型,它可以模拟人的大脑,大脑我们都知道,有很多神经元,每个神经元之间通过突触链接。 神经网络的设计就是模仿了这…

CRM系统中的联系人是什么?如何进行联系人管理?

上手CRM系统前掌握专业术语是必要的功课,在第一次使用CRM系统时小编和大家一样,分不清楚线索、联系人、客户、商机之间的关系,今天我们就来着重分享一下CRM中联系人是什么?如何进行联系人管理? CRM系统联系人是指能够…

物联网AI MicroPython学习之语法 WDT看门狗外设

学物联网,来万物简单IoT物联网!! WDT 介绍 模块功能: 看门狗WDT(WatchDog Timer)外设驱动模块 接口说明 WDT - 构建WDT对象 函数原型:WDT(timeout)参数说明: 参数类型必选参数&#xff1f…

每日一练:质因数分解

1. 题目 从键盘输入一个整数,开始整数的质因数分解,最后打印出该整数的所有质因数。 2.解题思路 1)初始化: 从最小的质数开始,将输入的整数不断除以质数,直到无法整除为止。   2)循环&#x…

哈希表之开散列的实现

回顾与引出 我们在上一节用闭散列的开放定址法实现了哈希表。不难看出这种方法有明显的缺点:一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同 关键码占据了可利用的空位置,使得寻找某关…

HuggingFace-利用BERT预训练模型实现中文情感分类(下游任务)

准备数据集 使用编码工具 首先需要加载编码工具,编码工具可以将抽象的文字转成数字,便于神经网络后续的处理,其代码如下: # 定义数据集 from transformers import BertTokenizer, BertModel, AdamW # 加载tokenizer token Ber…

VR全景校园:不被简单定义的校园展示,看的不止“一面”

学校的宣传,还是仅仅依靠一部宣传片来定义的吗?如今,在这个时代,VR全景技术已经越来越成熟了,并逐渐融入了我们的日常生活中,通过VR全景校园,我们可以在网上真实地感受校园的优美环境&#xff0…

【云原生】初识 Service Mesh

目录 一、什么是Service Mesh 二、微服务发展历程 2.1 微服务架构演进历史 2.1.1 单体架构 2.1.2 SOA阶段 2.1.3 微服务阶段 2.2 微服务治理中的问题 2.2.1 技术栈庞杂 2.2.2 版本升级碎片化 2.2.3 侵入性强 2.2.4 中间件多,学习成本高 2.2.5 服务治理功…

Android JNI 异常定位(2)—— addr2line

Android native报错有时候只有一句 signal 11 (SIGSEGV),这种情况仅通过log是很难定位到问题的。不过Android 在/data/tombstones目录保存了错误的堆栈信息,为定位bug提供了路径。不过一般这里的log都无法像java一样直接定位的出错的行数。如下图&#x…

吴恩达《机器学习》9-7-9-8:综合起来、自主驾驶

在神经网络的使用过程中,需要经历一系列步骤,从网络结构的选择到训练过程的实施。以下是使用神经网络时的主要步骤的小结: 一、网络结构的选择 输入层: 第一步是选择网络结构,即确定神经网络的层数以及每层的单元数。…