时序预测 | MATLAB实现基于ELM-AdaBoost极限学习机结合AdaBoost时间序列预测

时序预测 | MATLAB实现基于ELM-AdaBoost极限学习机结合AdaBoost时间序列预测

目录

    • 时序预测 | MATLAB实现基于ELM-AdaBoost极限学习机结合AdaBoost时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现ELM-Adaboost时间序列预测,极限学习机结合AdaBoost时间序列预测(风电功率预测);
2.运行环境为Matlab2020b;
3.data为数据集,excel数据,单变量时间序列数据,ELM_AdaboostTS.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MAE、MAPE、RMSE多指标评价;

模型描述

ELM-AdaBoost是一种将ELM和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱学习器组合起来形成一个强学习器,其中每个学习器都是针对不同数据集和特征表示训练的。ELM-AdaBoost算法的基本思想是将ELM作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个ELM模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。

程序设计

  • 完整源码和数据获取方式:私信博主回复MATLAB实现基于ELM-AdaBoost极限学习机结合AdaBoost时间序列预测
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/207689.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux学习第44天:Linux 多点电容触摸屏实验(二):难忘记第一次牵你手的温存

Linux版本号4.1.15 芯片I.MX6ULL 大叔学Linux 品人间百味 思文短情长 本章的思维导图内容如下: 二、硬件原理图分析 三、实验程序编写 1、修改设备树 1)、添加FT5426所使用的IO 一个复位 IO、一个中断 IO、…

Spring Cloud学习(十一)【深入Elasticsearch 分布式搜索引擎03】

文章目录 数据聚合聚合的种类DSL实现聚合RestAPI实现聚合 自动补全拼音分词器自定义分词器自动补全查询completion suggester查询RestAPI实现自动补全 数据同步数据同步思路分析实现elasticsearch与数据库数据同步 集群搭建ES集群创建es集群集群状态监控创建索引库1&#xff09…

[autojs]autojs开关按钮的简单使用

"ui"; ui.layout(<vertical><Switch id"autoService" text"无障碍服务"checked"false"textSize"15sp"/><button text"第二个按钮"/></vertical> ); ui.autoService.on("check"…

2022年09月 Scratch(二级)真题解析#中国电子学会#全国青少年软件编程等级考试

Scratch等级考试(1~4级)全部真题・点这里 一、单选题(共25题,每题2分,共50分) 第1题 数字:1,2,3,4,6,9,13,19,28,…的下一项是多少? A:37 B:39 C:41 D:47 答案:C 因为1+3=42+4=63+6=94+9=1313+6=199+19=28所以下一项为:28+13=41 第2题 下图红框中…

【Java 进阶篇】Redis:打开缓存之门

介绍 Redis&#xff08;Remote Dictionary Server&#xff09;是一个高性能的键值对存储系统&#xff0c;被广泛用作缓存、消息中间件和数据库。它以其快速的读写能力、支持多种数据结构和丰富的功能而闻名。在这篇博客中&#xff0c;我们将深入了解Redis的概念、安装以及基本…

企业数字化转型所需的数据在哪里找?企业数据运营有什么用?

现阶段&#xff0c;越来越多企业考虑数字化转型。特别是中小型企业&#xff0c;他们察觉到&#xff1a;数字化转型的关键在于数据的运营。只有通过数据的有效管理和不断挖掘&#xff0c;企业才可以更好地了解市场需求&#xff0c;优化业务流程&#xff0c;提高决策效率&#xf…

linux ld 链接器学习笔记

ld链接器笔记 1. 首先编写一段汇编代码 这里的汇编语法时 AT&T语法,是gcc原生支持的语法,底层使用 gas(gnu assembler) 完成汇编,相较于 Intel x86语法, AT&T 语法要更加古老,因此大多数人更加偏向于使用 Intel 的语法. nasm 编译器支持x86语法.自从2.10版本&#xf…

【Python进阶】近200页md文档14大体系第4篇:Python进程使用详解(图文演示)

本文从14大模块展示了python高级用的应用。分别有Linux命令&#xff0c;多任务编程、网络编程、Http协议和静态Web编程、htmlcss、JavaScript、jQuery、MySql数据库的各种用法、python的闭包和装饰器、mini-web框架、正则表达式等相关文章的详细讲述。 Python全套笔记直接地址…

Spring Boot创建和使用(重要)

Spring的诞生是为了简化Java程序开发的&#xff01; Spring Boot的诞生是为了简化Spring程序开发的&#xff01; Spring Boot就是Spring框架的脚手架&#xff0c;为了快速开发Spring框架而诞生的&#xff01;&#xff01; Spring Boot的优点&#xff1a; 快速集成框架&#x…

三维控件中定位一个点_vtkPointWidget

开发环境&#xff1a; Windows 11 家庭中文版Microsoft Visual Studio Community 2019VTK-9.3.0.rc0vtk-example参考代码 demo解决问题&#xff1a;允许用户使用三维光标在三维空间中定位一个点。关键类vtkPointWidget , 光标具有轮廓边界框、轴对齐十字准线和轴阴影&#xff…

特征工程完整指南 - 第二部分

苏米特班迪帕迪亚 照片由Dan Cristian Pădureş在Unsplash上拍摄 一、说明 DATA&#xff0c;通常被称为原油&#xff0c;需要经过加工和清洁才能有效地用于各种用途。正如我们不直接使用来自其来源的石油一样&#xff0c;数据也经过类似的处理以提取其真正价值。 二、特征选…

【Python】重磅!这本30w人都在看的Python数据分析畅销书更新了!

Python 语言极具吸引力。自从 1991 年诞生以来&#xff0c;Python 如今已经成为最受欢迎的解释型编程语言。 【文末送书】今天推荐一本Python领域优质数据分析书籍&#xff0c;这本30w人都在看的书&#xff0c;值得入手。 目录 作译者简介主要变动导读视频购书链接文末送书 pan…