第三节-Android10.0 Binder通信原理(三)-ServiceManager篇

1、概述

        在Android中,系统提供的服务被包装成一个个系统级service,这些service往往会在设备启动之时添加进Android系统,当某个应用想要调用系统某个服务的功能时,往往是向系统发出请求,调用该服务的外部接口。在上一节我们了解到,这种外部接口,我们通常称之为代理接口,也就是我们要拿到目标服务对应的代理对象。
    //TODO

    在Android8.0后,谷歌引入Treble机制,binder机制增加了hwbinder和vndbinder,其中vndbinder的守护进程为vndservicemanager。
    vndservicemanager和service共用同一份代码,只是传入的参数和宏控制的流程有部分差异。
    vndservicemanager会传入参数“/dev/vndbinder”,servicemanager使用默认的“/dev/binder”。
    servicemanager主要做了以下几件事:
    1、打开binder驱动,申请了128k的内存空间
    2、然后调用binder_become_context_manager()让自己成为整个系统中唯一的上下文管理器,其实也就是service管理器
    3、调用binder_loop()进入无限循环,不断监听并解析binder驱动发来的命令


2、Binder架构

//TODO

3、servicemanager的启动

//TODO

4、service_manager调用栈:

//TODO

5、源码分析

    5.1 主程序启动main()

         //TODO

    5.2 binder_open()

        servicemanager启动后,先通过binder_open()来打开“/dev/binder”,代码如下:
        

binder_open()的工作也比较简单,分为以下几步:

1、通过系统调用open()来打开“/dev/binder”,获得一个句柄信息,在Binder驱动重对应的是函数binder_open()

2、通过ioctl获取binder的版本信息,比较binder协议版本是否相同,不同则跳出,在Binder驱动重对应的是函数binder_ioctl()

3、通过mmap内存映射128k的内存空间,即把binder驱动文件的128K字节映射到了内存空间,这128K内存空间的servicemanager使用,在Binder驱动重对应的是函数binder_mmap()。

其他的binder服务进程会映射BINDER_VM_SIZE((1*1024*1024)-sysconf(SC_PAGE_SIZE)*2)的内存空间,SC_PAGE_SIZE表示一个page页的大小,通常情况下为4K,即(1M-4K*2)=(1M-7K)

这个page的大小,不同厂家有时候也会调整大小,一般有1M,64K,4K,1KB,通常为4K。

ServiceManager进程mmap的内存大小可以通过adb shell命令得出:

其中0x7457b61000 -0x745d41000=0x20000,转成10进制,即为128K

ARM32内存映射:

虚拟空间的低3GB部分从0-0XBFFFFFFF的虚拟线性地址,用户态和内核态都可以寻址,这部分也是每个进程的独立空间。

虚拟空间的高1G部分从0XC00000000到0XFFFFFFFF的虚拟地址,只有内核态的进程才能访问,这种限制由页目录和页眉描述符的权限标示位决定,通过MML启动控制

ARM64内存映射:

默认情况下,32位系统默认只能支持4G的内存,在打开PAE后,最大可以扩展到64G的内存,随着物理硬件的不断升级,现在的内存越来越大,因此基本上都切换到了64位系统。

理论上讲,64位的地址总线可以支持高达16EB(2^64)的内存。

2^64次方太大了,Linux内核只采用了64bits的一部分(开启CONFIG_ARM64_64K_PAGES时使用42bits,页大小是4K时使用39bits),该文假设使用的页大小是4K(VA_BITS=39)

ARM64有足够的虚拟地址,用户空间和内核空间可以有各自的2^39=512GB的虚拟地址。

需要注意到,32位应用仍然拥有512GB的内核虚拟地址空间,并且不与内核共享自己的4GB空间,但在ARM32上,32位应用只有3GB的地址空间。

ARM32和ARM64内存地址比较:


    5.3 binder_become_context_manager()

binder_become_context_manager()的作用是让servicemanager成为整个系统中唯一的上下文管理器,其实也就是service管理器,这样我们就可以把ServiceManager称之为守护进程。

对应的binder驱动中操作如下:

从用户空间拷贝ioctl的参数,调用binder_ioctl_set_ctx_mgr()进行设置

BINDER_SET_CONTEXT_MGR_EXT带参数,BINDER_SET_CONTEXT_MGR不带参数

binder_ioctl_set_ctx_mgr()的流程也比较简单

1、先检查当前进程是否具有注册Context Manager的SEAndroid安全权限

2、如果具有SELinux权限,会为整个系统的上下管理器专门生成一个binder_node节点,便该节点的强弱应用加1

3、新创建的binder_node节点,记入context->binder_context_mgr_node,即ServiceManager进程的context binder节点,使之成为serviceManager的binder管理实体


    5.4 binder_loop()

        下一步进行守护进程的循环处理,binder_loop()会先向binder驱动发出了BC_ENTER_LOOPER命令,告诉binder驱动“本线程要进入循环状态了”,接着进入一个for循环不断调用ioctl()读取发来的数据,接着解析这些数据

其中最重要的一个结构体是binder_write_read,它用来记录Binder buffer中读和写的数据信息结构体如下:

    5.5 binder_parse()

        在binder_loop()进入for循环之后,核心处理流程就是ioctl和binder_parse(),即不停的从Binder驱动接收读写数据,进行binder解析后,进行处理。

在binder_loop()中声明了一个128字节的栈内存-readbuf,用BINDER_WRITE_READ命令从驱动读取一些内容,并传入binder_parse(),binder_parse()根据binder驱动传来的“BR_XXX”协议码,进行相关的逻辑处理,最重要的有三个“BR_XXX”协议:

BR_TRANSACTION:事务处理,解析binder_transaction_data的数据,调用回调函数svcmgr_handler()进行服务的注册,获取等操作

BR_REPLY:消息回复

BR_DEAD_BINDER:死亡通知

只要binder_parse()解析正常,binder_loop()就会一直执行下去,ServiceManager进程不退出。

binder_parse()解析binder驱动传来的readbuf的内存,readbuf拥有128字节的栈内存,每次可以只处理一个cmd,也可以有多个cmd,所以存在一个while循环,可以同时解析多个cmd,多个cmd的结构体如下图所示:

        5.5.1 BR_XXX 协议码分析

        BR_XXX码,也称为Binder响应码,这里介绍了ServiceManager处理的一些响应码的作用:

        5.5.2 BR_TRANSACTION解析

        我们这里单独分析下BR_TRANSACTION的流程,这也是我们常用的一个流程,这是Binder驱动向Server端发送请求数据。

从readbuf中解析出binder_transaction_data的数据,最后对接收和发送数据进行了封装,传递给svcmgr_handler()做详细处理

从上main的逻辑看,我们重点关注的是binder_transaction_data这个结构,binder_transaction_data说明了transaction到底在传输什么语义,而语义码就记录在其code成员中,不同语义码需要携带的数据也是不同的,这些数据由data指定。

结构体说明如下:

从上面binder_transaction_data的结构可以看出,data可存入的数据很少,主要采用了数据其实地址和数据偏移量,根据代码上下文可知,调用了bio_init_from_txn(),从txn.transaction_data解析出binder_io的信息,存入msg

        5.5.2.1 bio_init_from_txn()

bio_init_from_txn()的作用就是把binder_transaction_data的“数据起始地址”,“偏移量”,“data数据的总大小”和“偏移数组中可用的条目”:

binder_transaction_data和binder_io的关联

初始化完binder_io的replay,并把transaction_data转换成了binder_io的msg后,调用回调函数svcmgr_handler()进行最终逻辑处理

    5.6 svcmgr_handler()

        在BR_TRANSACTION的命令解析后,就把binder_transaction_data_secctx的数据传给回调函数svcmgr_handler()进行处理。

根据不同的传输语义码(txn->code)来进行相应的操作:查询服务,注册服务,以及列举所服务

源码如下:

    5.7 ServiceManager是如何管理service信息的?

        //TODO

    5.8 注册服务

        根据传入的code:SVC_MGR_ADD_SERVICE得知,本次binder流程想要进行服务注册。

步骤:

从binder_io msg中获取服务名称和长度

从binder_io msg中获取handle

检查该服务是否有注册的selinx权限

查询服务列表svclist是否存在该handle,如果有handle,就更新该服务的handle信息,通过这个handle我们最终就能找到远端的service实体

如果svclist不存在该服务,申请一个svcinfo的空间,把服务名,长度,handle等信息存入其中

把svcinfo进入svclist的链表中

再以BC_ACQUIRE命令,handle为目标的信息,通过ioctl发送给binder驱动

最后以BC_REQEST_DEATH_NOTIFICATION命令的信息,通过ioctl发送给binder驱动,主要用于清理内存等收尾工作        

    5.9 查找服务

        //TODO

6、总结

        //TODO

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/208445.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

逸学java【初级菜鸟篇】9.5枚举

hi,我是逸尘,一起学java吧 枚举是信息的标志和分类 当一个变量有几种固定可能的取值时,就可以将它定义为类型的枚举。 优点:代码可读性好,入参约束严谨,代码优雅,是最好的信息分类技术&#x…

探秘开发app与小程序:一场技术与创新的博弈

app与小程序:一场技术与创新的博弈随着科技的飞速发展,移动应用程序已经成为我们日常生活中不可或缺的一部分。在这个充满竞争的时代,企业纷纷投身于开发各类移动应用,以期在市场中占据一席之地。然而,面对多样化的应用…

opencv-2D直方图

cv2.calcHist() 是 OpenCV 中用于计算直方图的函数。它可以计算一维或多维直方图,用于分析图像中像素值的分布。 基本的语法如下: hist cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]])参数说明: images:…

【OpenCV实现图像:使用OpenCV进行图像处理之透视变换】

文章目录 概要计算公式举个栗子实际应用小结 概要 透视变换(Perspective Transformation)是一种图像处理中常用的变换手段,它用于将图像从一个视角映射到另一个视角,常被称为投影映射。透视变换可以用于矫正图像中的透视畸变&…

双系统Ubuntu-22.04.3安装编译kaldi

Ubuntu物理内存要求85-100G以上,运行内存5-6G以上(如果第一次安装的Ubuntu物理内存不够,请勿进行扩容,扩容易出现黑屏、蓝屏、死机的情况,应该卸载Ubuntu重新安装,在安装过程中进行内存分配;运行…

PS_魔幻

首先打开一个背景图片 然后ctrl j复制一层背景 在调整中将图片改成黑白颜色 点击调整中的 色相/饱和度 调整明度 点击画笔工具,并且设置画笔模板 调节画笔大小,将笔记本电脑涂个概况 然后再新建色相/饱和度 勾选着色 调节背景颜色至喜欢 右键混合选项 …

vector的简单模拟实现_C++

目录 一、vector的数据结构 二、vector的构造 三、vector的增删查改及空间管理 四、全部代码 一、vector的数据结构 vector以线性连续空间为基础来定义数据结构以及扩展功能。vector的两个迭代器,分别是start和finish,分别指向配置得来的已被使用的空…

ESP32 Arduino实战Web篇-使用 WebSocket 创建 ESP32 Web 服务器

本文将详细介绍如何使用 WebSocket 创建 ESP32 Web 服务器,解释WebSocket原理与搭建步骤,并附超详细的代码解释 假设我们需要创建一个使用 ESP32 通过 WiFi 控制灯泡的项目。实现非常简单:我们将 ESP32 设置为软 AP 或 STA 模式,使其能够提供一个网页,显示灯开关的状态为…

【尚硅谷】第06章:随堂复习与企业真题(面向对象-基础)

第06章:随堂复习与企业真题(面向对象-基础) 一、随堂复习 1. (了解)面向过程 vs 面向对象 不管是面向过程、面向对象,都是程序设计的思路。面向过程:以函数为基本单位,适合解决简单…

Niushop 开源商城 v5.1.7:支持PC、手机、小程序和APP多端电商的源码

Niushop 系统是一款基于 ThinkPHP6 开发的电商系统,提供了丰富的功能和完善的商品机制。该系统支持普通商品和虚拟商品,并且针对虚拟商品还提供了完善的核销机制。同时,它也支持新时代的商业模式,如拼团、分销和多门店砍价等营销活…

RK3588平台开发系列讲解(嵌入式AI篇)RKNPU详解

文章目录 一、CPU、GPU、FPGA和NPU介绍二、CPU、GPU、FPGA和NPU区别三、NPU 应用四、RKNPU沉淀、分享、成长,让自己和他人都能有所收获!😄 📢 本篇将给大家介绍什么是RKNPU。 一、CPU、GPU、FPGA和NPU介绍 二、CPU、GPU、FPGA和NPU区别 若考虑成本、功耗、计算能力以及体…

pikachu靶场Table pikachu.member doesn’t exist:解决

背景: 第一次搭建pikachu靶场,搭建好后访问index.php后,尝试练习,发现界面显示Table pikachu.member doesn t exist,后来找了很多教程,没有解决,后来发现是自己没有进行初始化,给大家…