机器学习/sklearn 笔记:K-means,kmeans++,MiniBatchKMeans

1  K-means介绍

1.0 方法介绍

  • KMeans算法通过尝试将样本分成n个方差相等的组来聚类,该算法要求指定群集的数量。它适用于大量样本,并已在许多不同领域的广泛应用领域中使用。
  • KMeans算法将一组样本分成不相交的簇,每个簇由簇中样本的平均值描述。这些平均值通常称为簇的“质心”;
    • 注意,质心通常不是样本点,尽管它们存在于相同的空间中。

  • KMeans算法旨在选择最小化惯性或称为群内平方和标准的质心:

1.1 惯性的缺点

  • 惯性可以被认为是衡量簇内部一致性的一种度量。它有各种缺点:
    • 惯性假设簇是凸形的和各向同性的,但这不总是情况。
      • 对于拉长的簇或形状不规则的流形反应不佳
    • 惯性不是一个规范化的度量:
      • 我们只知道较低的值更好,零是最优的。但是在非常高维的空间中,欧几里得距离往往会变得膨胀(这是所谓的“维数诅咒”的一个实例)。
      • ——>在k均值聚类之前运行一个降维算法,如主成分分析(PCA),可以缓解这个问题并加快计算速度。
  • 以下是几个K-means效果不加的例子:
      • clusters的数量不是最优
      • 各向异性的cluster分布
      • 方差不同
      • 各个簇数量不同

1.2 Kmeans算法的步骤

  • K均值算法通常被称为劳埃德算法(Lloyd's algorithm)。简单来说,该算法有三个步骤
    • 第一步选择初始质心,最基本的方法是从数据集中选择样本
    • 初始化之后,K均值算法由两个步骤的循环组成
      • 第一个步骤是将每个样本分配给最近的质心
      • 第二步是通过取分配给每个前一个质心的所有样本的平均值来创建新的质心
      • 计算旧质心和新质心之间的差异,并重复这最后两个步骤,直到这个值小于一个阈值(直到质心不再有显著移动为止)
  • K均值算法等同于期望最大化算法,带有一个小的、全相等的、对角线协方差矩阵

  • 给定足够的时间,K均值总会收敛,但这可能是到一个局部最小值
    • 这在很大程度上取决于质心的初始化
    • 因此,计算通常会进行多次,质心的初始化也各不相同
    • 一个帮助解决这个问题的方法是k-means++初始化方案(init='k-means++')
      • 这样初始化质心通常会相互远离,导致比随机初始化更好的结果

2 sklearn.cluster.KMeans

sklearn.cluster.KMeans(n_clusters=8, *, init='k-means++', n_init='warn', max_iter=300, tol=0.0001, verbose=0, random_state=None, copy_x=True, algorithm='lloyd')

2.1 主要参数

n_clusters簇的数量
init
  • {‘k-means++’, ‘random’}或形状为(n_clusters, n_features)的数组,默认为'k-means++' 初始化方法
    • ‘k-means++’:使用基于点对总惯性贡献的经验概率分布的采样来选择初始簇质心。这种技术加快了收敛速度
      • 这里实现的算法是“贪婪k-means++”。它与普通的k-means++的不同之处在于,每个采样步骤进行多次尝试,并从中选择最佳质心
    • ‘random’:从数据中随机选择n_clusters个观测(行)作为初始质心
    • 数组:形状应为(n_clusters, n_features),并给出初始中心
n_init
  • 'auto'或int,默认值为10
  • k-means算法运行的次数,每次都使用不同的质心种子
  • 最终结果是n_init连续运行中惯性最佳的输出。
  • 当n_init='auto'时,运行次数取决于init的值:
    • 如果使用init='random',则为10
    • 如果使用init='k-means++'或init是类数组的,则为1
max_iter
  • int,默认值为300
  • k-means算法单次运行的最大迭代次数
tol两次连续迭代的簇中心的Frobenius范数差异来声明收敛的相对容忍度

2.2 举例

from sklearn.cluster import KMeans
import numpy as npX = np.array([[1, 2], [1, 4], [1, 0],[10, 2], [10, 4], [10, 0]])kmeans=KMeans(n_clusters=2,n_init='auto').fit(X)

2.2.1 属性

cluster_centers_

簇中心的坐标

labels_

每个点的标签

inertia_

样本到最近簇中心的平方距离之和,如果提供了样本权重,则按样本权重加权

n_iter_

运行的迭代次数

2.2.2 fit


fit(X, sample_weight=None)

 sample_weight 是X中每个观测的权重。如果为None,则所有观测都被赋予相等的权重

3 sklearn.cluster.kmeans_plusplus

类似于使用k_means++来进行

sklearn.cluster.kmeans_plusplus(X, n_clusters, *, sample_weight=None, x_squared_norms=None, random_state=None, n_local_trials=None)
X

用来选择初始种子的数据

(也就是KMeans里面fit的内容)

n_cluster要初始化的质心数量
sample_weightX中每个观测的权重

3.1 返回值:

centers:形状为(n_clusters, n_features) ,k-means的初始中心。

indices:形状为(n_clusters,) 在数据数组X中选择的中心的索引位置。对于给定的索引和中心,X[index] = center

3.2 举例

from sklearn.cluster import kmeans_plusplus
import numpy as npX = np.array([[1, 2], [1, 4], [1, 0],[10, 2], [10, 4], [10, 0]])kmeans_plusplus(X,n_clusters=2)
'''
(array([[10,  0],[ 1,  4]]),array([5, 1]))
'''

4 Mini Batch K-Means

  • MiniBatchKMeans是KMeans算法的一个变种,它使用小批量(mini-batches)来减少计算时间,同时仍然试图优化相同的目标函数
    • 小批量是输入数据的子集,在每次训练迭代中随机采样
    • 这些小批量大大减少了收敛到局部解所需的计算量
    • 与其他减少k-means收敛时间的算法不同,mini-batch k-means产生的结果通常只比标准算法稍差
  • 该算法在两个主要步骤之间迭代,类似于传统的k-means算法
    • 在第一步中,从数据集中随机抽取样本,形成一个小批量.然后,这些样本被分配到最近的质心
    • 在第二步中,更新质心。与k-means不同,这是按样本进行的
      • 对于小批量中的每个样本,通过取样本及其之前分配到该质心的所有样本的流式平均值来更新分配的质心。
      • 这样做的效果是随着时间的推移减少质心变化的速率。
    • 这些步骤执行直到收敛或达到预定的迭代次数为止
  • MiniBatchKMeans比KMeans收敛得更快,但结果的质量有所降低

4.1 sklearn.cluster.MiniBatchKMeans

class sklearn.cluster.MiniBatchKMeans(n_clusters=8, *, init='k-means++', max_iter=100, batch_size=1024, verbose=0, compute_labels=True, random_state=None, tol=0.0, max_no_improvement=10, init_size=None, n_init='warn', reassignment_ratio=0.01)

4.1.1 主要参数

n_clusters簇的数量
init
  • {‘k-means++’, ‘random’}或形状为(n_clusters, n_features)的数组,默认为'k-means++' 初始化方法
    • ‘k-means++’:使用基于点对总惯性贡献的经验概率分布的采样来选择初始簇质心。这种技术加快了收敛速度
      • 这里实现的算法是“贪婪k-means++”。它与普通的k-means++的不同之处在于,每个采样步骤进行多次尝试,并从中选择最佳质心
    • ‘random’:从数据中随机选择n_clusters个观测(行)作为初始质心
    • 数组:形状应为(n_clusters, n_features),并给出初始中心
max_iter
  • int,默认值为300
  • k-means算法单次运行的最大迭代次数
batch_sizemini batch的大小,默认是1024
n_init
  • 'auto'或int,默认值为3
  • k-means算法运行的次数,每次都使用不同的质心种子
  • 最终结果是n_init连续运行中惯性最佳的输出。
  • 当n_init='auto'时,运行次数取决于init的值:
    • 如果使用init='random',则为3
    • 如果使用init='k-means++'或init是类数组的,则为1

 4.1.2 属性

还是那些:cluster_centers,labels_,inertia_,n_iter_,n_steps

4.1.3 方法

方法上fit,tranform,predict这些都有,多了一个partial_fit,表示使用一个mini-batch的样本

4.2 举例

from sklearn.cluster import MiniBatchKMeans
import numpy as npX = np.array([[1, 2], [1, 4], [1, 0],[10, 2], [10, 4], [10, 0]])mini_kmeans=MiniBatchKMeans(n_clusters=2).fit(X)mini_kmeans.cluster_centers_
'''
array([[ 1.        ,  2.57142857],[10.        ,  2.        ]])
'''mini_kmeans.labels_
#array([0, 0, 0, 1, 1, 1])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/209837.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

03梯度下降

目录 lambda基础知识 代码 核心算法: lambda基础知识 lambda 是 Python 中的一个关键字,用于创建匿名函数。匿名函数是一种没有具体名称的小型、临时的函数,通常用于一次性的、简单的操作。lambda 函数的语法如下:python Copy c…

专注短视频账号矩阵系统源头开发---saas工具

专注短视频账号矩阵系统源头开发---saas营销化工具,目前我们作为一家纯技术开发团队目前已经专注打磨开发这套系统企业版/线下版两个版本的saas营销拓客工具已经3年了,本套系统逻辑主要是从ai智能批量剪辑、账号矩阵全托管发布、私信触单收录、文案ai智能…

Web前端—移动Web第五天(媒体查询、Bootstrap、综合案例-alloyTeam)

版本说明 当前版本号[20231122]。 版本修改说明20231122初版 目录 文章目录 版本说明目录移动 Web 第五天01-媒体查询基本写法书写顺序案例-左侧隐藏媒体查询-完整写法关键词 / 逻辑操作符媒体类型媒体特性 媒体查询-外部CSS 02-Bootstrap简介使用步骤下载使用 栅格系统全局…

Android WorldWind加载shapefile格式文件形成三维效果

目录 1 前言2 实现思路3 绘制Polygons4 读取shapefile文件5 加载立体模型6 问题1 前言 在项目中有时会加载shapefile格式的数据,要形成三维立体效果。但是查看worldwind NASA官网,在worldwind android的使用教程中并没用加载shapefile格式的教程,然后源码中也没有开发加载s…

数据库基础入门 — SQL运算符

我是南城余!阿里云开发者平台专家博士证书获得者! 欢迎关注我的博客!一同成长! 一名从事运维开发的worker,记录分享学习。 专注于AI,运维开发,windows Linux 系统领域的分享! 本…

深入浅出理解libevent——2万字总结

概述 libevent,libev,libuv都是c实现的异步事件库,注册异步事件,检测异步事件,根据事件的触发先后顺序,调用相对应回调函数处理事件。处理的事件包括:网络 io 事件、定时事件以及信号事件。这三个事件驱动着服务器的运…

Py之arxiv:arxiv的简介、安装、使用方法之详细攻略

Py之arxiv:arxiv的简介、安装、使用方法之详细攻略 目录 arxiv的简介 arxiv的安装 arxiv的使用方法 1、对arXiv数据库的文章搜索和获取 arxiv的简介 arXiv是由康奈尔大学图书馆推出的项目,为物理学、数学、计算机科学、数量生物学、数量金融和统计学…

el-table表格排序(需要后端判别),el-table导出功能(向后端发送请求)

&#xff08;1&#xff09;表格排序 &#xff08;2&#xff09;简单的table导出功能&#xff08;需要后台支撑&#xff09;必须要有iframe &#xff08;3&#xff09;页面所有代码&#xff1a; <template><div class"mainContainer"><el-form:model&…

【STM32外设系列】GPS定位模块(ATGM336H)

&#x1f380; 文章作者&#xff1a;二土电子 &#x1f338; 关注公众号获取更多资料&#xff01; &#x1f438; 期待大家一起学习交流&#xff01; 文章目录 一、GPS模块简介二、使用方法2.1 引脚介绍2.2 数据帧介绍2.3 关于不同的启动方式 三、前置知识3.1 strstr函数3.2…

Jenkins+Maven+Gitlab+Tomcat 自动化构建打包、部署

JenkinsMavenGitlabTomcat 自动化构建打包、部署 1、环境需求 本帖针对的是Linux环境&#xff0c;Windows或其他系统也可借鉴。具体只讲述Jenkins配置以及整个流程的实现。 1.JDK&#xff08;或JRE&#xff09;及Java环境变量配置&#xff0c;我用的是JDK1.8.0_144&#xff0…

4.22每日一题(累次积分的计算:交换次序)

注&#xff1a;因为 是积不出的函数&#xff0c;所以先不用算&#xff0c;最后发现&#xff0c;出现dx与dy可以相互抵消&#xff0c;即可算出答案

23. 深度学习 - 多维向量自动求导

Hi, 你好。我是茶桁。 前面几节课中&#xff0c;我们从最初的理解神经网络&#xff0c;到讲解函数&#xff0c;多层神经网络&#xff0c;拓朴排序以及自动求导。 可以说&#xff0c;最难的部分已经过去了&#xff0c;这节课到了我们来收尾的阶段&#xff0c;没错&#xff0c;生…