【分布式能源的选址与定容】基于多目标粒子群算法分布式电源选址定容规划研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

1.1 功率损耗

​1.2 电压质量

1.3 DG总容量

📚2 运行结果

🌈3 Matlab代码实现

🎉4 参考文献


💥1 概述

参考文献:

本文采用的是换一个算法解决, 基于基于多目标粒子群算法分布式电源选址定容规划研究。

将可再生能源的分布式发电技术与大电网结 合,是 普 遍 公认的节能减排、绿色 环 保、安全可靠的电力系统运行方式, 是电力发展的方向。分布式电源(DG)是指在一定的地域范围内,以分散方式布置在用户附近, 与环境兼容的小型模块化发电单元,其发电功率为几千瓦到 几十兆瓦。

分布式发电系统目前大多与配电网并网运行。DG 入 电 网后,会对配电网的潮流分布产生影响,进而可以优化配电网 络,缓解配电网输 配 用 电 压 力。但 是 由 于 DG 的 投 入 和 退出有很大的随 机 性,且输出功率的稳定性易受环境影响,因此,DG的不当接入会对电网产生诸多负面影响,如 影 响 配 电网的稳定性及电压质量,产 生 谐 波 等。这 些 影 响 的 大 小 与DG的容量和接入位置有很大关,因此,DG 的选址定容是在 DG规划阶段中需要考虑的重点问题。

由于规划的优化目标较为单一,传 统 的 规 划 方 法 无 法 很 好地解决这一问题。近 年 来,考 虑 电 压、电流质量和环境等因素的多目标优化迅速发展,但量纲的不统一,使得求解的复杂性大大提高,给多目标优化提出了新的挑战。本文在 研究标准粒子群优化算法的基础上,针 对 配 电 网 中 DG 的 选址定容问题,建立了包括有功率损耗、电压质量及接入 DG 的总容量为目标函数的数学模型,基于多目标粒子群算法分布式电源选址定容规划研究,用Matlab解决之。

1.1 功率损耗

电能在从发电端传输到负载端的过程中,输电线路上产生的电能损耗不可址 见,只议r地减小有功功率损耗,提理地配置配电网中的 DG,可以有效地减小有功功率损耗,提高发电利用率,节约能量。基于有功功率损耗的目标函数最优数学表达式为:


1.2 电压质量

 某些状况下,电力系统在遭受干扰后的几秒或几分钟内,系统中的某些母线电压可能经历大幅度﹑持续性降低,从而使得系统的完整性遭到破坏,功率不能正常地传送给用户。这种灾变称为系统电压不稳定﹐其灾难后果则是电压崩溃。通常用静态电压稳定指标来表示系统电压稳定性。配电网中电
压质量受配电系统的电压稳定性影呵。今乂术用能T网P电压基于期望电压的方差来描述电压质量。基于电压质量的目标函数最优数学表达式为:

1.3 DG总容量

在实际应用中不仅要考虑改善电网带来的经济效应,还需要考虑DG安装、运行和维护的成本费用问题。本文中不涉及经济模型,仅考虑接入配电网的DG总容量。基于DG总容量的目标函数最优数学表达式为:

📚2 运行结果

🌈3 Matlab代码实现

部分代码:

%% 雅可比矩阵
J=[jpt jpv; jqt jqv];
X = (inv(J))*M;%偏差
%% 相位偏差
dTh = X(1:nbus-1);
%% 电压偏差
dV = X(nbus:end);
[e1,d1,n1]=eig(JR);%计算矩阵A的特征值和特征向量的函数是eig(A)[V,D,W] = eig(A),[V,D,W] = eig(A)返回满矩阵 W,其列是对应的左特征向量,使得 W’A = DW’。
%diag(A),若A是一个矩阵,则diag函数的作用是产生提取矩阵的对角线;若a是一个向量,则diag函数的作用是产生一个对角线为a的矩阵
%% 目标2 电压稳定性
f2val=max(1./diag((d1)))*max(abs(dQ));%目标2,稳定性
del(2:nbus) = dTh + del(2:nbus);
k = 1;
for i = 2:nbus
    if type(i) == 3
        V(i) = dV(k) + V(i);
        k = k+1;
    end
end
%% 目标2和目标3
tval=sum(1./diag((d1)));
po_val=flow_cal(nbus,V,del,BMva);
f1val=sum(po_val);%各支路网损和
f3val=sum(datain(5:8));%DG容量和

fout=[f1val; f2val; f3val];

for i = 1 : N
    % Number of individuals that dominate this individual
    individual(i).n = 0;
    % Individuals which this individual dominate
    individual(i).p = [];
    for j = 1 : N
        dom_less = 0;
        dom_equal = 0;
        dom_more = 0;
        for k = 1 : M
            if (x(i,V + k) < x(j,V + k))
                dom_less = dom_less + 1;
            elseif (x(i,V + k) == x(j,V + k))
                dom_equal = dom_equal + 1;
            else
                dom_more = dom_more + 1;
            end
        end
        if dom_less == 0 && dom_equal ~= M   %大于等于的情况
            individual(i).n = individual(i).n + 1;
        elseif dom_more == 0 && dom_equal ~= M   %小于等于的情况
            individual(i).p = [individual(i).p j];
        end
    end   
    if individual(i).n == 0
        x(i,M + V + 1) = 1;
        F(front).f = [F(front).f i];
    end
end
% Find the subsequent fronts
while ~isempty(F(front).f)
   Q = [];
   for i = 1 : length(F(front).f)
       if ~isempty(individual(F(front).f(i)).p)
          for j = 1 : length(individual(F(front).f(i)).p)
              individual(individual(F(front).f(i)).p(j)).n = ...
                  individual(individual(F(front).f(i)).p(j)).n - 1;
               if individual(individual(F(front).f(i)).p(j)).n == 0
                   x(individual(F(front).f(i)).p(j),M + V + 1) = ...
                        front + 1;
                    Q = [Q individual(F(front).f(i)).p(j)];
                end
            end
       end
   end
   front =  front + 1;
   F(front).f = Q;
end

[temp,index_of_fronts] = sort(x(:,M + V + 1));
for i = 1 : length(index_of_fronts)
    sorted_based_on_front(i,:) = x(index_of_fronts(i),:);
end
current_index = 0;

%% Crowding distance
%The crowing distance is calculated as below
% ?For each front Fi, n is the number of individuals.
%   ?initialize the distance to be zero for all the individuals i.e. Fi(dj ) = 0,
%     where j corresponds to the jth individual in front Fi.
%   ?for each objective function m
%       * Sort the individuals in front Fi based on objective m i.e. I =
%         sort(Fi,m).
%       * Assign infinite distance to boundary values for each individual
%         in Fi i.e. I(d1) = ? and I(dn) = ?
%       * for k = 2 to (n ? 1)
%           ?I(dk) = I(dk) + (I(k + 1).m ? I(k ? 1).m)/fmax(m) - fmin(m)
%           ?I(k).m is the value of the mth objective function of the kth
%             individual in I

% Find the crowding distance for each individual in each front
for front = 1 : (length(F) - 1)
%    objective = [];
    distance = 0;
    y = [];
    previous_index = current_index + 1;
    for i = 1 : length(F(front).f)
        y(i,:) = sorted_based_on_front(current_index + i,:);
    end
    current_index = current_index + i;
    % Sort each individual based on the objective
    sorted_based_on_objective = [];
    for i = 1 : M
        [sorted_based_on_objective, index_of_objectives] = ...
            sort(y(:,V + i));
        sorted_based_on_objective = [];
        for j = 1 : length(index_of_objectives)
            sorted_based_on_objective(j,:) = y(index_of_objectives(j),:);
        end
        f_max = ...
            sorted_based_on_objective(length(index_of_objectives), V + i);
        f_min = sorted_based_on_objective(1, V + i);
        y(index_of_objectives(length(index_of_objectives)),M + V + 1 + i)...
            = Inf;
        y(index_of_objectives(1),M + V + 1 + i) = Inf;
         for j = 2 : length(index_of_objectives) - 1
            next_obj  = sorted_based_on_objective(j + 1,V + i);
            previous_obj  = sorted_based_on_objective(j - 1,V + i);
            if (f_max - f_min == 0)
                y(index_of_objectives(j),M + V + 1 + i) = Inf;
            else
                y(index_of_objectives(j),M + V + 1 + i) = ...
                     (next_obj - previous_obj)/(f_max - f_min);
            end
         end
    end
    distance = [];
    distance(:,1) = zeros(length(F(front).f),1);
    for i = 1 : M
        distance(:,1) = distance(:,1) + y(:,M + V + 1 + i);
    end
    y(:,M + V + 2) = distance;
    y = y(:,1 : M + V + 2);
    z(previous_index:current_index,:) = y;
end
f = z();

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]周洋,许维胜,王宁,邵炜晖.基于改进粒子群算法的多目标分布式电源选址定容规划[J].计算机科学,2015,42(S2):16-18+31. 

[2]冯元元. 基于多目标规划的分布式发电选址定容研究[D].华北电力大学,2015.  

[3]杨智君. 基于群智能算法的分布式电源选址与定容[D].太原科技大学,2019.DOI:10.27721/d.cnki.gyzjc.2019.000065.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/21092.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

防范 XSS 攻击的措施

防范 XSS 攻击的措施 XSS&#xff08;Cross-site scripting&#xff09;攻击是一种常见的网络安全漏洞&#xff0c;它可以通过注入恶意代码来攻击用户的计算机和浏览器&#xff0c;从而窃取用户的敏感信息或执行恶意操作。本篇文章将介绍防范 XSS 攻击的措施&#xff0c;并提供…

JConsole或者JvisualVM远程连接jetty进行jvm监控

最近项目发现了服务有内存泄漏的问题&#xff0c;但是在jvm上并没有配置即jvm没有配置 -XX:HeapDumpOnOutOfMemoryError -XX:HeapDumpPath/tmp/heapdump.hprof 这两个参数&#xff0c;导致在发生了oom后只能看到日志中有OOM异常&#xff0c;其他的并不能分析出来&#xff0c;等…

CSS3 动画 animation 入门学习笔记 之 属性详解

文章目录 简单介绍 CSS 动画CSS 动画的作用CSS 动画语法介绍CSS 动画属性animation-nameanimation-durationanimation-delayanimation-directionanimation-iteration-countanimation-play-stateanimation-timing-functionanimation-fill-modeanimation 简单介绍 CSS 动画 引用…

css3提供的网页布局

css3提供的网页布局 弹性盒子模型&#xff08;flex box&#xff09;&#xff1a; 设置成弹性盒子 默认横着排放&#xff08;div也是&#xff09; 当子盒子给的宽度过大&#xff0c;总的子盒子宽度超过父级盒子&#xff0c;会自动适配&#xff0c;计算整个盒子父级的大小&#…

【计算机视觉 | 图像分割】arxiv 计算机视觉关于图像分割的学术速递(7 月 13 日论文合集)

文章目录 一、分割|语义相关(7篇)1.1 Correlation-Aware Mutual Learning for Semi-supervised Medical Image Segmentation1.2 RFENet: Towards Reciprocal Feature Evolution for Glass Segmentation1.3 Sem-CS: Semantic CLIPStyler for Text-Based Image Style Transfer1.4…

Django_静态资源配置和ajax(九)

目录 一、静态资源配置 二、AJAX ajax作用 使用ajax 1、环境配置 2、创建html模板文件 3、编写视图函数并添加路由 4、运行django开发服务器进行验证 源码等资料获取方法 一、静态资源配置 静态资源的相关配置都在项目目录下的 settings.py 文件中进行配置。配置参数如…

MySQL主从复制

文章目录 介绍配置——前置条件配置——主库配置——从库测试读写分离案例背景Sharding-JDBC介绍入门案例 介绍 MySQL主从复制是一个异步的复制过程&#xff0c;底层是基于MySQL数据库自带的二进制日志功能。就是一台或多台MySQL数据库&#xff08;slave&#xff0c;即从库&…

23数字图像置乱技术(matlab程序)

1.简述 一、引言 所谓“置乱”&#xff0c;就是将图像的信息次序打乱&#xff0c;a像素移动到b像素位置上&#xff0c;b像素移动到c像素位置上&#xff0c;……&#xff0c;使其变换成杂乱无章难以辨认的图片。数字图像置乱技术属于加密技术&#xff0c;是指发送发借助数学或者…

6.EFLFK(EFLK+kafka)

文章目录 EFLFK(EFLKkafka)zookeeper概述Zookeeper 特点数据结构和工作场景选举机制&#xff08;重要&#xff09;总结部署Zookeeper kafka为什么用消息队列&#xff08;MQ&#xff09;中间件使用消息队列的好处消息队列模式消息队列总结&#xff1a;kafka概述Kafka特性Kafka架…

怎样优雅地增删查改(六):按任意字段关键字查询

文章目录 实现应用测试 实现 定义按任意字段关键字查询过滤器&#xff08;IKeywordOrientedFilter&#xff09;接口&#xff0c;查询实体列表Dto若实现该接口&#xff0c;将筛选指定的目标字段&#xff08;TargetFields&#xff09;包含指定的关键字&#xff08;Keyword&#…

基于springboot的地铁轨道交通运营系统

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容&#xff1a;毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…

推荐Selenium 自动化测试实战

你将获得 深入 Selenium 源码、原理、封装、技巧&#xff1b; unittest、pytest、DDT、POM 迭代测试方法&#xff1b; 大型项目分布式测试解决方案&#xff1b; Jenkins 持续集成和交付。 演示地址&#xff1a;www.runruncode.com/portal/article/index/id/19451/cid/85.html 课…