kafka精准一次、事务、幂等性

Kafka事务

消息中间件的消息保障的3个级别

  1. At most once 至多一次。数据丢失。
  2. At last once 至少一次。数据冗余
  3. Exactly one 精准一次。好!!!

如何区分只要盯准提交位移、消费消息这两个动作的时机就可以了。

:先消费消息、再提交位移。

如果提交位移这一步挂了,就会再消费一遍消息。重复消费====》〉》至少一次

当:先提交位移、再消费消息。

提议位移成功、消费消息失败,那么数据就丢失了====》〉》至多一次

如何精准一次呢?

幂等和事务!

幂等

对接口的多次调用所产生的结果和一次调用的结果是一样的。

即:(第一次调用,中途挂了,再次调用==一次调用) 为true

如何实现?

在v2版本的消息存储格式用有两个字段。produce_id(简称pid) 、first sequence

在这里插入图片描述

每个新的生产者实例在初始化的时候都会被分配一个pid,每个pid,消息发送到每一个分区都有序列号 sequence,序列号会从0开始递增,每发送一条消息,<PID,分区> 对应的序列号的值会➕1。这个序列号值(SN)在broker的内存中维护。只有当SN_new=SN_old+1.

broker才会接收这个消息。

如SN_new < SN_old+1 说明消息重复了,这个消息可以直接丢掉。

如SN_new>SN_old+1 说明消息丢失了,有数据还没有卸写入。抛乱序异常OutOforderSequenceException。

即用序列号来保证消息的顺序消费。

注意 所记录的这个序列号是针对 每一对<PID,分区> 所以这个幂等实现的是单会话、单分区的。

如何保证多个分区之间的幂等性呢?

事务

保证对多个分区写入操作的原子性,要么全部成功、要么全部失败。将应用程序的生产消息、消费消息、提交消费位移当作原子操作来处理。

用户显示指定一个事务id: transactionalId。这个事务id是唯一的

从生产者角度来考虑,事务保证了生产者会话消息的幂等发送跨生产者会话的事务恢复.

  • 生产者会话消息的幂等发送:如有有两个相同事务id的生产者,新的创建了 旧的就会被kill
  • 某个生产者实例宕机了,新的生产者实例可以保证未完成的旧事务要么被提交 要没被中断

实现过程,以consume-transform-produce为例。

package com.hzbank.yjj.transaction;import com.hzbank.yjj.producer.CustomerPartitioner;
import com.hzbank.yjj.producer.ProducerlnterceptorPrefix;
import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.errors.ProducerFencedException;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.kafka.common.serialization.StringSerializer;import java.time.Duration;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Properties;public class TransactionConsumeTransformProduce {public static final String brokerList = "localhost:9092";public static Properties getConsumerProps(){Properties props =new Properties();props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, brokerList);props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());props.put(ConsumerConfig.GROUP_ID_CONFIG,"groupId");props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,false);return props;}public static Properties getProducerProps(){Properties props =new Properties();props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokerList);props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());props.put(ProducerConfig.TRANSACTIONAL_ID_CONFIG,"transactionalId");return props;}public static void main(String[] args) {//初始化生产者和消费者KafkaConsumer<String, String> consumer = new KafkaConsumer<>(getConsumerProps());consumer.subscribe(Collections.singletonList("topic-source"));KafkaProducer<String, String> producer = new KafkaProducer<>(getProducerProps());//初始化事务producer.initTransactions();while (true){ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));if(!records.isEmpty()){HashMap<TopicPartition, OffsetAndMetadata> offsets = new HashMap<>();//开启事务producer.beginTransaction();try {for (TopicPartition partition : records.partitions()) {List<ConsumerRecord<String, String>> partitionRecords = records.records(partition);for (ConsumerRecord<String, String> record : partitionRecords) {System.out.println("获取到了topic-source发送过来的数据"+record.value());System.out.println("do some ");ProducerRecord<String, String> producerRecord = new ProducerRecord<>("topic-sink", record.key(), record.value());producer.send(producerRecord);}// 获取最近一次的消费位移long lastConsumedOffset = partitionRecords.get(partitionRecords.size() - 1).offset();offsets.put(partition,new OffsetAndMetadata(lastConsumedOffset+1));}//提交消费位移producer.sendOffsetsToTransaction(offsets,"groupId");//提交事务producer.commitTransaction();} catch (ProducerFencedException e) {System.out.println("异常了");producer.abortTransaction();}}}}}

1. 找到TransactionCoordinator。

TransactionCoordinator负责分配和管理事务。
FindCoordinatorRequest 发送请求找到TransactionCoordinator所在的broker节点。返回其对应的node_id、 host、 port 信息

transactionalId 的哈希值计算主题_transaction_state 中的分区编号

根据分区leader副本找到所在的broker节点,极为Transaction Coordinator节点

2. 获取pid

通过InitProducerIdRequest向TransactionCoordinator 获取pid 为当前生产者分配一个pid。

String transactionalId; 事务id
int transactionTimeoutMs; 事务状态更新超时时间

3. 保存pid

TransactionCoordinator 第一次收到事务id会和对应pid保存下来,以消息(事务日志消息)的形式保存到主题_transaction_state中,实现持久化

InitProducerIdRequest还会出发一下任务:

- 增加pid对应的producer_epoch.具有相同 PID 但 producer_epoch 小 于该 producer_叩och 的其他生产者新开启的事务将被拒绝 。
- 恢复( Commit)或中止( Ab。此)之前的生 产 者未完成的 事务

4. 开启事务

通过 KafkaProduc町的 beginTransaction()方法。调用该方法后,生产者本 地会标记己经开启了 一个新的事务 ,只有在生产者发送第一条消息之后 TransactionCoordinator 才会认为该事务 己经开启 。

5. Consume-Transform-Produce

整个事务处理数据。

  • AddPartitionsToTxnRequest:让 TransactionCoordinator 将<transactionld, TopicPartition>的对应关系存储在主题

    transaction state 中

  • ProduceRequest:生产者通过 ProduceRequest 请求发送消息( ProducerBatch)到用户 自定义主题中

  • AddOffsetsToTxnRequest:TransactionCoordinator 收到这个AddOffsetsToTxnRequest请求,通过 groupId 来推导出在一consumer_offsets 中的分区

  • TxnOffsetCommitRequest:发送 TxnOffsetCommitRequest 请求给 GroupCoordinator,从而将本次事务中 包含的消费位移信息 offsets 存储到主题 consumer offsets 中

6. 提交或者终止事务

KafkaProducer 的 commitTransaction()方法或 abortTransaction()方法。

写不下去了,暂时就先理解这么多了,后面再多结合源码去看看。

参考:书籍《深入理解 Kafka:核心设计与实践原理》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/215349.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【机器学习】聚类(一):原型聚类:K-means聚类

文章目录 一、实验介绍1. 算法流程2. 算法解释3. 算法特点4. 应用场景5. 注意事项 二、实验环境1. 配置虚拟环境2. 库版本介绍 三、实验内容0. 导入必要的库1. Kmeans类a. 构造函数b. 闵可夫斯基距离c. 初始化簇心d. K-means聚类e. 聚类结果可视化 2. 辅助函数3. 主函数a. 命令…

百度云加速免费版下线,推荐几款目前仍旧免费的CDN

近日&#xff0c;百度云加速实施了新政策&#xff0c;将不再支持免费套餐服务。现在免费的CDN也越来越少了&#xff0c;推荐几款目前仍旧免费的CDN&#xff0c;大家且用且珍惜&#xff01; 1、雨云【点此直达】 源站为雨云产品可以免费使用CDN&#xff0c;源站非雨云产品流量包…

【MATLAB】全网入门快、免费获取、持续更新的科研绘图教程系列2

14 【MATLAB】科研绘图第十四期表示散点分布的双柱状双Y轴统计图 %% 表示散点分布的双柱状双Y轴统计图%% Made by Lwcah &#xff08;公众号&#xff1a;Lwcah&#xff09; %% 公众号&#xff1a;Lwcah %% 知乎、B站、小红书、抖音同名账号:Lwcah&#xff0c;感谢关注~ %% 更多…

【数据结构】二叉排序树(c风格、结合c++引用)

目录 1 基本概念 结构体定义 各种接口 2 二叉排序树的构建和中序遍历 递归版单次插入 非递归版单次插入 3 二叉排序树的查找 非递归版本 递归版本 4 二叉排序树的删除&#xff08;难点&#xff09; 1 基本概念 普通二叉排序树是一种简单的数据结构&#xff0c;节点的值…

Interactive Visual Data Analysis

Words&Contents Home | Interactive Visual Data Analysis Book Outline 这本书对视觉、互动和分析方法进行了系统而全面的概述&#xff0c;作为数据可视化方面比较好的读物&#xff1b; 目录 Words&Contents Book Outline &#xff08;一&#xff09;Introduct…

【教学类-06-07】20231124 (55格版)X-X之间的加法、减法、加减混合题

背景需求 在大四班里&#xff0c;预测试55格“5以内、10以内、20以内的加法题、减法题、加减混合题”的“实用性”。 由于只打印一份20以内加法减法混合题。 “这套20以内的加减法最难”&#xff0c;我询问谁会做&#xff08;摸底幼儿的水平&#xff09; 有两位男孩举手想挑…

c语言数字转圈

数字转圈 题干输入整数 N&#xff08;1≤N≤9&#xff09;&#xff0c;输出如下 N 阶方阵。 若输入5显示如下方阵&#xff1a; * 1** 2** 3** 4** 5* *16**17**18**19** 6* *15**24**25**20** 7* *14**23**22**21** 8* *13**12**11**10** 9*输入样例3输出样例* 1*…

Hibernate的三种状态

1.瞬时状态(Transient) 通过new创建对象后&#xff0c;对象并没有立刻持久化&#xff0c;他并未对数据库中的数据有任何的关联&#xff0c;此时java对象的状态为瞬时状态&#xff0c;Session对于瞬时状态的java对象是一无所知的&#xff0c;当对象不再被其他对象引用时&#xf…

改进YOLOv8 | YOLOv5系列:RFAConv续作,即插即用具有任意采样形状和任意数目参数的卷积核AKCOnv

RFAConv续作,构建具有任意采样形状的卷积AKConv 一、论文yolov5加入的方式论文 源代码 一、论文 基于卷积运算的神经网络在深度学习领域取得了显著的成果,但标准卷积运算存在两个固有缺陷:一方面,卷积运算被限制在一个局部窗口,不能从其他位置捕获信息,并且其采样形状是…

python opencv 边缘检测(sobel、沙尔算子、拉普拉斯算子、Canny)

python opencv 边缘检测&#xff08;sobel、沙尔算子、拉普拉斯算子、Canny&#xff09; 这次实验&#xff0c;我们分别使用opencv 的 sobel算子、沙尔算子、拉普拉斯算子三种算子取进行边缘检测&#xff0c;然后后面又使用了Canny算法进行边缘检测。 直接看代码&#xff0c;代…

卷积神经网络(Inception V3)识别手语

文章目录 一、前言二、前期工作1. 设置GPU&#xff08;如果使用的是CPU可以忽略这步&#xff09;2. 导入数据3. 查看数据 二、数据预处理1. 加载数据2. 可视化数据3. 再次检查数据4. 配置数据集 三、构建Inception V3网络模型1.自己搭建2.官方模型 五、编译六、训练模型七、模型…