管理类联考——数学——汇总篇——知识点突破——代数——函数——记忆

文章目录

  • 整体
    • 文字提炼
    • 图像绘画
  • 考点
    • 记忆/考点汇总——按大纲

本篇思路:根据各方的资料,比如名师的资料,按大纲或者其他方式,收集/汇总考点,即需记忆点,在通过整体的记忆法,比如整体信息很多,通常使用记忆宫殿法,绘图记忆法进行记忆,针对局部/细节/组成的部分,可通过多种方法,比如联想记忆法、理解记忆法等进行进一步记忆。

整体

整体使用记忆宫殿法和绘图记忆法等进行记忆

文字提炼

通过目录大纲法和重点归纳法等,进行重要考点的提炼串联

函数、方程、不等式:【函数核心在于图像,图像又涉及交点;方程核心在于根】
第一:从一元二次函数、方程、不等式出发(因为三者知识点最多且互有关联)
1.对于一元二次函数:
【固定做题法:
⟹ \Longrightarrow 一看开口方向:(注意自然语言的表达以决定对二次项系数a是否等于0进行分类讨论)二次函数,二次方程,二次不等式,抛物线(默认a≠0);函数,方程,不等式(需要对a是否等于0进行分类讨论)
⟹ \Longrightarrow 二看判别式: △ = b 2 − 4 a c △=b^2-4ac =b24ac
⟹ \Longrightarrow 三看对称轴: x = − b 2 a x=-\frac{b}{2a} x=2ab
⟹ \Longrightarrow 四看交点值:顶点坐标: ( − b 2 a , 4 a c − b 2 4 a ) (-\frac{b}{2a},\frac{4ac-b^2}{4a}) (2ab,4a4acb2)。当 △ = b 2 − 4 a c > 0 △=b^2-4ac>0 =b24ac>0时,函数图象与x轴有两个不同的交点 M 1 ( x 1 , 0 ) , M 2 ( x 2 , 0 ) M_1(x_1,0),M_2(x_2,0) M1(x1,0),M2(x2,0),则 ∣ M 1 M 2 ∣ = ∣ x 1 − x 2 ∣ = △ ∣ a ∣ |M_1M_2|=|x_1-x_2|=\frac{\sqrt{△}}{|a|} M1M2=x1x2=a

图像绘画

记忆宫殿法的记忆桩来存放一二级目录,绘图记忆法记忆细节等。

床尾游泳池
U型泳池放置一元二次函数
泳池上部分:有颗苹果
泳池下部:有着顶点,一边是对称轴,一边是y最值。

考点

通过汇总各方大佬资料,作为收集考点/记忆点的信息输入:XX,收集汇总如下:

汇总考点的必要,或者说,汇总记忆的内容的必要,不言而喻,首先,你要记忆东西,得有东西,所以你要梳理出你需要记忆的全部东西,其次,在收集多个大佬的梳理的考点,又可以找出各条逻辑帮助记忆考点,所以,梳理考点是很有必要的,是记忆的基础,是记忆宫殿里面的物品,是我们最后考试需要去找到的解题物品。

记忆/考点汇总——按大纲

——一元二次函数——【图像→交点】
—— a x 2 + b x + c = y ax^2+bx+c=y ax2+bx+c=y二次函数核心在于“图像”:整体可以由: 图像(形状,上下,交点) ⟹ \Longrightarrow △ △ ⟹ \Longrightarrow 抛物线与x轴交点 ⟹ \Longrightarrow 交点图形
——【固定做题法:
⟹ \Longrightarrow 一看开口方向:(注意自然语言的表达以决定对二次项系数a是否等于0进行分类讨论)二次函数,二次方程,二次不等式,抛物线(默认a≠0);函数,方程,不等式(需要对a是否等于0进行分类讨论)
⟹ \Longrightarrow 二看判别式: △ = b 2 − 4 a c △=b^2-4ac =b24ac
⟹ \Longrightarrow 三看对称轴: x = − b 2 a x=-\frac{b}{2a} x=2ab
⟹ \Longrightarrow 四看交点值:顶点坐标: ( − b 2 a , 4 a c − b 2 4 a ) (-\frac{b}{2a},\frac{4ac-b^2}{4a}) (2ab,4a4acb2)。当 △ = b 2 − 4 a c > 0 △=b^2-4ac>0 =b24ac>0时,函数图象与x轴有两个不同的交点 M 1 ( x 1 , 0 ) , M 2 ( x 2 , 0 ) M_1(x_1,0),M_2(x_2,0) M1(x1,0),M2(x2,0),则 ∣ M 1 M 2 ∣ = ∣ x 1 − x 2 ∣ = △ ∣ a ∣ |M_1M_2|=|x_1-x_2|=\frac{\sqrt{△}}{|a|} M1M2=x1x2=a 。】

1.三种函数形式
一般式 y = a x 2 + b x + c ( a ≠ 0 ) y=ax^2+bx+c(a≠0) y=ax2+bx+c(a=0)
配方式/顶点式 y = a ( x + b 2 a ) 2 + 4 a c − b 2 4 a y=a(x+\frac{b}{2a})^2+\frac{4ac-b^2}{4a} y=a(x+2ab)2+4a4acb2,对称轴为 x = − b 2 a x=-\frac{b}{2a} x=2ab,顶点坐标为 ( − b 2 a , 4 a c − b 2 4 a ) (-\frac{b}{2a},\frac{4ac-b^2}{4a}) (2ab,4a4acb2)
两根/零点式 y = a ( x − x 1 ) ( x − x 2 ) y=a(x-x_1)(x-x_2) y=a(xx1)(xx2) x 1 , x 2 x_1,x_2 x1,x2是函数的两个根,对称轴为 x = x 1 + x 2 2 x=\frac{x_1+x_2}{2} x=2x1+x2

2.图像特点
图像形状:二次函数 y = a x 2 + b x + c ( a ≠ 0 ) y=ax^2+bx+c(a≠0) y=ax2+bx+c(a=0)的图像是一条抛物线。——【图像的全身】
开口方向:由a决定,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。——【图像的嘴巴】
对称轴:以 x = − b 2 a x=-\frac{b}{2a} x=2ab为对称轴。——【图像的比例】
顶点坐标 ( − b 2 a , 4 a c − b 2 4 a ) (-\frac{b}{2a},\frac{4ac-b^2}{4a}) (2ab,4a4acb2)。——【图像的头部】
y轴截距:c,c决定抛物线与y轴交点的位置,影响顶点高度。
定义域:一般隐藏在判别式大于等于零中。
最值:当a>0(a<0)时,有最小(大)值 4 a c − b 2 4 a \frac{4ac-b^2}{4a} 4a4acb2,无最大(小)值。——【需验证对称轴是否在定义域内,在则可套用顶点坐标求最值】
单调性:当a>0时,抛物线开口向上,函数在 ( − ∞ , − b 2 a ] (-∞,-\frac{b}{2a}] (,2ab]上递减,在 [ − b 2 a , + ∞ ) [-\frac{b}{2a},+∞) [2ab,+)上递增,当 x = − b 2 a x=-\frac{b}{2a} x=2ab时, f ( x ) m i n = 4 a c − b 2 4 a f(x)_{min}=\frac{4ac-b^2}{4a} f(x)min=4a4acb2;当 a < 0 a<0 a0时,抛物线开口向下,函数在 ( − ∞ , − b 2 a ] (-∞,-\frac{b}{2a}] (,2ab]上递增,在 [ − b 2 a , + ∞ ) [-\frac{b}{2a},+∞) [2ab,+)上递减,当 x = − b 2 a x=-\frac{b}{2a} x=2ab时, f ( x ) m a x = 4 a c − b 2 4 a f(x)_{max}=\frac{4ac-b^2}{4a} f(x)max=4a4acb2。——【】
交点图像:当 △ = b 2 − 4 a c > 0 △=b^2-4ac>0 =b24ac>0时,函数图象与x轴有两个不同的交点 M 1 ( x 1 , 0 ) , M 2 ( x 2 , 0 ) M_1(x_1,0),M_2(x_2,0) M1(x1,0),M2(x2,0),则 ∣ M 1 M 2 ∣ = ∣ x 1 − x 2 ∣ = △ ∣ a ∣ |M_1M_2|=|x_1-x_2|=\frac{\sqrt{△}}{|a|} M1M2=x1x2=a 。——【图像的内部】

3.参数含义:二次函数 y = a x 2 + b x + c ( a ≠ 0 ) y=ax^2+bx+c(a≠0) y=ax2+bx+c(a=0)
a:当a>0(a<0)时,有最小(大)值 4 a c − b 2 4 a \frac{4ac-b^2}{4a} 4a4acb2,无最大(小)值。
b:影响对称轴位置,因以 x = − b 2 a x=-\frac{b}{2a} x=2ab为对称轴。——【a,b决定对称轴的位置】
c:代表图像在y轴上的截距(纵截距),影响顶点高度,因顶点坐标 ( − b 2 a , 4 a c − b 2 4 a ) (-\frac{b}{2a},\frac{4ac-b^2}{4a}) (2ab,4a4acb2)

4.图像与x轴的位置
已知函数 y = a x 2 + b x + c y=ax^2+bx+c y=ax2+bx+c与x轴交点的个数,可知
(1)若函数与x轴有2个交点,则 a ≠ 0 和△ = b 2 − 4 a c > 0 a≠0和△=b^2-4ac>0 a=0=b24ac0;——【【易错点】此类题易忘掉一元二次函数(方程、不等式)的二次项系数不能为0。要使用 △ = b 2 − 4 a c △=b^2-4ac =b24ac,必先看二次项系数是否为0。】
(2)若函数与x轴有1个交点,即抛物线与x轴相切或图像是一条直线,则 a ≠ 0 和△ = b 2 − 4 a c = 0 a≠0和△=b^2-4ac=0 a=0=b24ac=0;或 a = 0 和 b ≠ 0 a=0和b≠0 a=0b=0
(3)若函数与轴没有交点,则 a ≠ 0 和△ = b 2 − 4 a c < 0 a≠0和△=b^2-4ac<0 a=0=b24ac0 a = b = 0 和 c ≠ 0 a=b=0和c≠0 a=b=0c=0
(4)图像始终位于x轴上方,则 a > 0 和△ = b 2 − 4 a c < 0 a>0和△=b^2-4ac<0 a0=b24ac0
(5)图像始终位于x轴下方,则 a < 0 和△ = b 2 − 4 a c < 0 a<0和△=b^2-4ac<0 a0=b24ac0

5.图像与一次函数的交点
二次函数 y = a x 2 + b x + c y=ax^2+bx+c y=ax2+bx+c与一次函数 y = k x + m y=kx+m y=kxm交点情况有三种,利用数形结合思想,令两函数值相等,得到新的一元二次方程 a x 2 + b x + c − ( k x + m ) = 0 ax^2+bx+c-(kx+m)=0 ax2+bxc(kx+m)=0
(1)2个交点:新的一元二次方程 △> 0 △>0 0
(2)1个交点:①一次函数与二次函致相切,新的一元二次方程 △ = 0 △=0 =0。特别地,在顶点处相切时, k = 0 k=0 k=0,一次函数为 y = 4 a c − b 2 4 a y=\frac{4ac-b^2}{4a} y=4a4acb2。②一次函数垂直于x轴,k不存在。
(3)0个交点:新的一元二次方程 △< 0 △<0 0

6.特殊的抛物线 y = a x 2 + b x + c ( a ≠ 0 ) y=ax^2+bx+c(a≠0) y=ax2+bx+c(a=0)
(1)若 b = 0 b= 0 b=0,则 y = a x 2 + c y=ax^2+c y=ax2c,抛物线的对称轴为y轴。
(2)若c = 0,则 y = a x 2 + b x y=ax^2+bx y=ax2+bx,抛物线过原点。
(3)若 b = c = 0 b=c=0 b=c=0,则 y = a x 2 y= ax^2 y=ax2,抛物线的对称轴为y轴且过原点。

——其他函数——【记图像可辅助记忆性质】
正比例函数 y = k x ( k ≠ 0 ) y=kx(k≠0) y=kx(k=0),定义域为 R R R,值域为 R R R,单调性为 k > 0 k>0 k0时,单调递增; k < 0 k<0 k0时,单调递减,图像是“一条直线”
反比例函数 y = k x ( k 为常数, k ≠ 0 ) y=\frac{k}{x}(k为常数,k≠0) y=xk(k为常数,k=0),定义域为{ x ∣ x ≠ 0 x|x≠0 xx=0},单调性为k>0时,在区间 ( − ∞ , 0 ) , ( 0 , + ∞ ) (-∞,0),(0,+∞) (,0),(0,+)上单调递减;k<0时,在区间 ( − ∞ , 0 ) , ( 0 , + ∞ ) (-∞,0),(0,+∞) (,0),(0,+)上单调递增,值域为{ y ∣ y ≠ 0 y|y≠0 yy=0},图像是“两条圆心对称的圆弧”
对勾函数 y = x + 1 x y=x+\frac{1}{x} y=x+x1,定义域为{ x ∣ x ≠ 0 x|x≠0 xx=0},值域为 ( − ∞ , − 2 ) ∪ ( 2 , + ∞ ) (-∞,-2)∪(2,+∞) (,2)(2,+),单调性为在区间 ( − ∞ , − 1 ) , ( 1 , + ∞ ) (-∞,-1),(1,+∞) (,1),(1,+)上单调递增;在区间 ( − 1 , 0 ) , ( 0 , 1 ) (-1,0),(0,1) (1,0),(0,1)上单调递减,图像是“两条圆心对称的耐特勾”
指数函数 y = a x ( a > 0 , a ≠ 1 ) y=a^x(a>0,a≠1) y=ax(a0,a=1),定义域为 ( − ∞ , + ∞ ) (-∞,+∞) (,+),值域 ( 0 , + ∞ ) (0,+∞) (0,+),单调性为当 a > 1 a>1 a1时,是增函数;当 0 < a < 1 0<a<1 0a1时,是减函数。图像恒过点 ( 0 , 1 ) ,是“一条弧线” (0,1),是“一条弧线” (0,1),是一条弧线。—— a > 0 a>0 a0 0 < a < 1 0<a<1 0a1两图像形成交叉于 ( 0 , 1 ) (0,1) (0,1)的文字yi乂】——【指数函数的重点有两部分,一部分是图像性质,往往会涉及利用单调性比大小。另一部分是运算性质,考生需要牢记指数函数的运算公式。】
对数函数 y = l o g a x ( a > 0 且 a ≠ 1 ) y=log_ax(a>0且a≠1) y=logax(a0a=1),定义域为 ( 0 , + ∞ ) (0,+∞) (0,+),值域 全体实数 R 全体实数R 全体实数R,单调性为当 a > 1 a>1 a1时,是增函数;当 0 < a < 1 0<a<1 0a1时,是减函数。图像恒过点 ( 1 , 0 ) ,是“一条弧线” (1,0),是“一条弧线” (1,0),是一条弧线。它与 y = a x y=a^x y=ax互为反函数。—— a > 0 a>0 a0 0 < a < 1 0<a<1 0a1两图像形成交叉于 ( 1 , 0 ) (1,0) (1,0)的躺着的文字yi乂】——【对数函数的重点有两部分,一部分是图像性质,往往会涉及利用单调性比大小。另一部分是运算性质,考生需要牢记对数函数的运算公式。此外,对数函数有一个最容易设置陷阱的地方就是在对数函数中要求真数部分恒大于0。】
反函数:同底的指数函数 y = a x y=a^x y=ax与对数函数 y = l o g a x y=log_ax y=logax互为反函数。
指数运算 a m ⋅ a n = a m + n a^m·a^n=a^{m+n} aman=am+n a m ÷ a n = a m − n a^m÷a^n=a^{m-n} am÷an=amn ( a m ) n = a m n (a^m)n=a^{mn} (am)n=amn a 0 = 1 a^0=1 a0=1 a − n = 1 a n a^{-n}=\frac{1}{a^n} an=an1 a m n = a m n a^{\frac{m}{n}}=\sqrt[n]{a^m} anm=nam ——【指数函数重点=图像+运算】
对数运算:当 a > 0 a>0 a0 a ≠ 1 a≠1 a=1时, m > 0 m>0 m0 n > 0 n>0 n0,则 l o g 底 真 log_底真 log:——【乘除变加减,指数提到前】
指对互换: a b = N a^b=N ab=N ⟺ \Longleftrightarrow l o g a N = b ( a > 0 , a ≠ 1 , N > 0 ) log_aN=b(a>0,a≠1,N>0) logaN=b(a0a=1N0)
同底对数: l o g a M + l o g a N = l o g a ( M N ) log_aM+log_aN=log_a(MN) logaM+logaN=loga(MN)
同底对数: l o g a M − l o g a N = l o g a ( M N ) log_aM-log_aN=log_a(\frac{M}{N}) logaMlogaN=loga(NM)
幂运算: l o g a m b n = n m l o g a b log_{a^m}b^n=\frac{n}{m}log_ab logambn=mnlogab m = 1 m=1 m=1时, l o g a b n = n l o g a b log_ab^n=nlog_ab logabn=nlogab m = n m=n m=n时, l o g a m b n = l o g a b log_{a^m}b^n=log_ab logambn=logab l o g a M n = 1 n l o g a M log_a\sqrt[n]{M}=\frac{1}{n}log_aM loganM =n1logaM
换底公式: l o g a b = l o g c b l o g c a = l g b l g a = l n b l n a log_ab=\frac{log_cb}{log_ca}=\frac{lgb}{lga}=\frac{lnb}{lna} logab=logcalogcb=lgalgb=lnalnb l o g a b = 1 l o g b a log_ab=\frac{1}{log_ba} logab=logba1 l o g a M = l o g b M ÷ l o g b a ( b > 0 且 b ≠ 1 ) log_aM=log_bM÷log_ba(b>0且b≠1) logaM=logbM÷logba(b0b=1),一般c取10或e。——【换底公式,真数在上,底数在下】
常用对数:以10为底的对数, l o g 10 N log_{10}N log10N,简记为 l g N lgN lgN
自然对数:以无理数e(e=2.71828…)为底的对数, l o g e N log_eN logeN,简记为 l n N lnN lnN
特殊对数: l o g a 1 = 0 log_a1=0 loga1=0 l o g a a = 1 log_aa=1 logaa=1 l o g a b ⋅ l o g b a = 1 log_ab·log_ba=1 logablogba=1,负数和零没有对数, a l o g a b = b a^{log_ab}=b alogab=b l o g a a s = s log_aa^s=s logaas=s—— a l o g a b = b a^{log_ab}=b alogab=b
最值函数
最大值函数: m a x max max{ x , y , z x,y,z x,y,z}表示 x , y , z x,y,z x,y,z中最大的数;本质为: m a x max max{ a , b , c a,b,c a,b,c} ≥ a ≥a a m a x max max{ a , b , c a,b,c a,b,c} ≥ b ≥b b m a x max max{ a , b , c a,b,c a,b,c} ≥ c ≥c c。对于函数而言, m a x max max{ f ( x ) , g ( x ) f(x),g(x) f(x),g(x)}表示各函数图像中最高的部分。
最小值函数: m i n min min{ x , y , z x,y,z x,y,z}表示 x , y , z x,y,z x,y,z中最小的数。本质为: m i n min min{ a , b , c a,b,c a,b,c} ≤ a ≤a a m i n min min{ a , b , c a,b,c a,b,c} ≤ b ≤b b m i n min min{ a , b , c a,b,c a,b,c} ≤ c ≤c c。对于函数而言, m i n min min{ f ( x ) , g ( x ) f(x),g(x) f(x),g(x)}表示各函数图像中最低的部分。
对于max函数图像,先画出各函数图像,然后取图像位于上方部分;对于min函数图像,先画出各函数图像,然后取图像位于下方部分。
绝对值函数
y = ∣ a x + b ∣ y=|ax+b| y=ax+b先画 y = a x + b y=ax+b y=ax+b的图像,再将x轴下方的图像翻到x轴上方。
y = ∣ a x 2 + b x + c ∣ y=|ax^2+bx+c| y=ax2+bx+c的图像,再将x轴下方的图像翻到x轴上方。
y = a x 2 + b ∣ x ∣ + c y=ax^2+b|x|+c y=ax2+bx+c先画 y = a x 2 + b x + c y=ax^2+bx+c y=ax2+bx+c的图像,再将y轴左侧图像删掉,替换成y轴右侧对称过来的图像。
∣ a x + b y ∣ = c b |ax+by|=cb ax+by=cb表示两条平行的直线 a x + b y = ± c ax+by=±c ax+by=±c,且两者关于原点对称。
∣ a x ∣ + ∣ b y ∣ = c |ax|+|by|=c ax+by=c,当 a = b a=b a=b时,表示正方形,当 a ≠ b a≠b a=b时,表示菱形。
∣ x y ∣ + a b = a ∣ x ∣ + b ∣ y ∣ |xy|+ab=a|x|+b|y| xy+ab=ax+by ∣ x y ∣ + a b = a ∣ x ∣ + b ∣ y ∣ |xy|+ab=a|x|+b|y| xy+ab=ax+by ⟹ \Longrightarrow ∣ x y ∣ − a ∣ x ∣ − b ∣ y ∣ + a b = 0 |xy|-a|x|-b|y|+ab=0 xyaxby+ab=0 ⟹ \Longrightarrow ∣ x ∣ ( ∣ y ∣ − a ) − b ( ∣ y ∣ − a ) = 0 |x|(|y|-a)-b(|y|-a)=0 x(ya)b(ya)=0 ⟹ \Longrightarrow ( ∣ x ∣ − b ) ( ∣ y ∣ − a ) = 0 (|x|-b)(|y|-a)=0 (xb)(ya)=0 ⟹ \Longrightarrow ∣ x ∣ = b |x|=b x=b ∣ y ∣ = a |y|=a y=a, 故表示由 x = ± b , y = ± a x=±b,y=±a x=±b,y=±a围成的图形,当 a = b a=b a=b时,表示正方形,当 a ≠ b a≠b a=b时,表示矩形。
在这里插入图片描述
y = ∣ f ( x ) ∣ y=|f(x)| y=f(x)上翻下型:先画 y = f ( x ) y=f(x) y=f(x)图像,再将图像位于x轴下方的部分翻到x轴上方。
y = f ( ∣ x ∣ ) y=f(|x|) y=f(x)右翻左型:先画 y = f ( x ) y=f(x) y=f(x)的图像,保留y轴右侧部分;再将右侧的部分翻转到y轴左侧。

分段函数
分段函数:对于其定义域内的自变量x的不同值,不能用一个统一的解析式表示,而是要用两个或两个以上的式子表示。分段函数表示不同的取值范围对应不同的表达式。对于分段函数,根据不同取值区间,选择不同的表达式代入求解。
模型识别:自变量在不同取值范围内有不同的对应法则。
解题方法:求分段函数的函数值 f ( x 0 ) f(x_0) f(x0)时,应该首先判断 x 0 x_0 x0所属的取值范围,然后把 x 0 x_0 x0代入到相应的解析式中进行计算。
思路:分段函数是指自变量在两个或两个以上不同的范围内,有不同的对应法则的函数。它是一个函数,是一类表达形式特殊的函数,却又常常被学生误认为是几个函数。它的定义城是各段函数定义域的并集,其值域也是各段函数值城的并集。分段函数有关问题蕴含着分类讨论、数形结合等思想方法。分段函数应用较广,做题时要根据范围来确定对应的表达式。

复合函数
(1)定义:已知函数 y = f ( u ) y=f(u) y=f(u),又 u = g ( x ) u=g(x) u=g(x),则称函数 y = f ( g ( x ) ) y=f(g(x)) y=f(g(x))为函数 y = f ( u ) y =f(u) y=f(u) u = g ( x ) u =g(x) u=g(x)的复合函数。其中y称为因变量,x称为自变量,u称为中间变量。
(2)求复合函数的定义域
①复合函数的定义域,是函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]中x的取值范围;
②若函数 f ( x ) f(x) f(x)的定义域为 ( a , b ) (a,b) (a,b),则复合函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]的定义域由 a < g ( x ) < b a<g(x)<b ag(x)b求出;
③若函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]的定义域为 ( a , b ) (a,b) (a,b),则 f ( x ) f(x) f(x)的定义域为 g ( x ) g(x) g(x) a < x < b a<x<b axb上的值域。
注意: g ( x ) g(x) g(x)的值域对应 y = f ( u ) y=f(u) y=f(u)的定义域。对于复合函数,可以将内部的函数看成一个整体进行分析。此外,内部函数的值域对应外部函数的定义域。
(3)复合函数的单调性——【同增异减】
在这里插入图片描述
奇偶函数
① 奇函数的性质
定义域关于原点对称,图像关于原点对称: f ( − x ) = − f ( x ) f(-x)=-f(x) f(x)=f(x)
② 偶函数的性质
定义域关于原点对称,图像关于y轴对称: f ( − x ) = f ( x ) f(-x)=f(x) f(x)=f(x)

反比例函数 y = k x ( k ≠ 0 ) y=\frac{k}{x}(k≠0) y=xk(k=0)
在一个反比例函数图像上任取一点,过该点分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为 ∣ k ∣ |k| k

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/216309.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VMware Workstation 17 虚拟机自启动失效 解决脚本

VMware Workstation17新增加了虚拟机自启配置 但是很奇怪在我的一台计算机上能够自启,在另一台计算机上就失效 编写脚本 以命令方式完成虚拟机开机自启 #虚拟机自启.batif "%1""hide" goto CmdBegin start mshta vbscript:createobject("w…

win10安装pytorch(py39)

cuda≤11.6,观察控制面板 观察torch对应cuda版本 https://download.pytorch.org/whl/torch/ 安装cuda11.6.0 CUDA Toolkit Archive | NVIDIA Developer cmd输入nvcc -V 编辑国内镜像源 .condarc anaconda prompt输入 查看环境 conda env list 安装py3.9…

某软件商店app抓包分析与sign加密算法实现

文章目录 1. 写在前面2. 抓包配置3. 抓包分析4. 接口测试5. sign加密算法6. 数据效果展示 【作者主页】:吴秋霖 【作者介绍】:Python领域优质创作者、阿里云博客专家、华为云享专家。长期致力于Python与爬虫领域研究与开发工作! 【作者推荐】…

数据治理技术:研究现状与数据规范

随着信息技术的迅速发展,数据规模逐渐扩大,与此同时,劣质数据也随之而来,极大地降低了数据挖掘的质量,对信息社会造成了严重的困扰,劣质数据大量存在于很多领域和机构,国外权威机构的统计表明:美…

0001Java程序设计-springboot基于微信小程序批发零售业商品管理系统

文章目录 **摘 要****目录**系统实现开发环境 编程技术交流、源码分享、模板分享、网课分享 企鹅🐧裙:776871563 摘 要 本毕业设计的内容是设计并且实现一个基于微信小程序批发零售业商品管理系统。它是在Windows下,以MYSQL为数据库开发平台…

Redis-主从与哨兵架构

Jedis使用 Jedis连接代码示例&#xff1a; 1、引入依赖 <dependency><groupId>redis.clients</groupId><artifactId>jedis</artifactId><version>2.9.0</version> </dependency> 2、访问代码 public class JedisSingleTe…

Git仓库瘦身大作战:133M 到 4M 的实战

开局两张图 瘦身前瘦身后 目录 开局两张图前言下载 BFG克隆代码Git 仓库瘦身清理存储库储存库 GC推送仓库 Git 瘦身验证结语开源项目 前言 在进行项目开发的过程中&#xff0c;代码仓库的体积可能会逐渐增大&#xff0c;特别是在版本控制系统中保留了大量的历史提交记录和不必…

统计二叉树中的伪回文路径 : 用位运用来加速??

题目描述 这是 LeetCode 上的 「1457. 二叉树中的伪回文路径」 &#xff0c;难度为 「中等」。 Tag : 「DFS」、「位运算」 给你一棵二叉树&#xff0c;每个节点的值为 1 到 9 。 我们称二叉树中的一条路径是 「伪回文」的&#xff0c;当它满足&#xff1a;路径经过的所有节点值…

使用 STM32F7 和 TensorFlow Lite 开发低功耗人脸识别设备

本文旨在介绍如何使用 STM32F7 和 TensorFlow Lite框架开发低功耗的人脸识别设备。首先&#xff0c;我们将简要介绍 STM32F7 的特点和能力。接下来&#xff0c;我们将讨论如何使用 TensorFlow Lite 在 STM32F7 上实现人脸识别算法。然后&#xff0c;我们将重点关注如何优化系统…

网络数据结构skb_buff原理

skb_buff基本原理 内核中sk_buff结构体在各层协议之间传输不是用拷贝sk_buff结构体&#xff0c;而是通过增加协议头和移动指针来操作的。如果是从L4传输到L2&#xff0c;则是通过往sk_buff结构体中增加该层协议头来操作&#xff1b;如果是从L4到L2&#xff0c;则是通过移动sk_…

golang defer关键词执行原理与代码分析

使用的go版本为 go1.21.2 首先我们写一个简单的defer调度代码 package mainimport "fmt"func main() {defer func() {fmt.Println("xiaochuan")}() }通过go build -gcflags -S main.go获取到对应的汇编代码 可以在图中看到有个CALL runtime.deferreturn(…

2、用命令行编译Qt程序生成可执行文件exe

一、创建源文件 1、新建一个文件夹&#xff0c;并创建一个txt文件 2、重命名为main.cpp 3、在main.cpp中添加如下代码 #include <QApplication> #include <QDialog> #include <QLabel> int main(int argc, char *argv[]) { QApplication a(argc, argv); QDi…