论文阅读——DDeP(cvpr2023)

分割标签耗时且贵,所以常常使用预训练提高分割模型标签有效性,反正就是,需要一个预训练分割模型。典型的分割模型encoder部分通过分类任务预训练,decoder部分参数随机初始化。作者认为这个方法次优,尤其标签比较少的情况。

于是提出可以和监督学习encoder结合的基于去噪denoising的decoder预训练方法。当标签少的时候这个方法表现很好,超过监督学习。

所以整个方法就是,encoder在ImageNet-21k上预训练,然后冻结encoder参数,再在ImageNet-21k预训练decoder参数,不需要使用标签。然后在特定数据集上统一微调encoder和decoder。

架构:

标准的去噪公式是:

也就是预测原始图片x。

但是扩散模型预测的是噪声:

于是做实验看预测哪个比较好:

所以预测噪声。

所以,上述说明,本文的方法是一个无监督、去噪的方法。

无监督的预训练方法最终受到预训练目标所学习的表示与最终目标任务所需的表示之间不匹配的限制。对于任何无监督目标,一个重要的“健全性检查”是它不会很快达到这个极限,以确保它与目标任务很好地一致。增大预训练计算预算(应该是训练迭代多一些),可以提高表示能力。说明去噪是一种可扩展的方法,增大预训练计算预算,表示能力提高。

和监督训练相比,数据多的时候不如监督预训练,少的时候超过。

噪声的影响:

去噪预训练的解码器一个很重要的超参数是噪声的大小。噪声方差必须足够大,这样网络才能学习到有意义的表示从而去除噪声,但不能太大,导致干净图像和有噪声图像之间的过度分布偏移。

可伸缩的加性噪声(Scaled Additive Noise)性能好于简单加性噪声(Simple Additive Noise)。

简单加性噪声:

可伸缩加性噪声:

从图上看,论文给出的最好的噪声大小是0.22

encoder部分在ImageNet-21K数据集做分类任务预训练,然后固定参数。

单独预训练去噪decoder。原则上,任何一个数据集都能进行去噪预训练,但是会有这样的担心:即预训练数据和目标数据之间分布的变化可能会影响目标任务的性能。为了验证这种担心,作者在几个数据集上预训练了decoder,而encoder都是ImageNet-21K数据集做分类任务预训练,参数固定。最后发现还是在ImageNet-21K预训练的decoder效果最好。这个结论也适用于和ImageNet-21K数据集分布不同的Cityscapes数据集,因此,用DDeP预训练的模型可以用于很多其他数据集。

上面这些预训练目标的选择,也就是预测噪声而不是x,和噪声的选择等,和扩散模型很相似,这样自然就会产生一个问题,即如果使用完全的扩散模型预训练,是不是提高性能。结果是用DDPM方法预训练没有提高性能。

前面提到的噪声大小的γ,在我们的模型是一个定值,也就是相当于扩散模型的一步,PPDM是一个完全的扩散模型,它每一个训练例子中都从[0,1]中随机均匀选一个γ值。于是作者试验了随机选择γ,但是效果不如固定的γ。

实验部分:

微调设置:cross-entropy loss,  Adam with a cosine learning rate decay schedule,a batch size of 512 and train for 100 epochs,learning rate is 6e−5 for the 1× and 3× width decoders, and 1e−4 for the 2× width decoder;

random cropping and random left-right flipping,1024 × 1024 for Cityscapes and 512×512 for ADE20K and Pascal Context,All of the decoder denoising pretraining runs are conducted at a 224 × 224 resolution。

inference on Cityscapes:apply horizontal flip and average the results for each half;For Pascal Context and ADE20K, we also use multi-scale evaluation with rescaled versions of the image in addition to the horizontal flips. The scaling factors used are (0.5, 0.75, 1.0, 1.25, 1.5, 1.75)。

结果:

上面这些结果使用的是TransUNet,下面标准UNet

说明这个方法可以泛化到其他不是transformer architectures的结构,即backbone-agnostic。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/216740.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言每日一题(37)两数相加

力扣网 2 两数相加 题目描述 给你两个 非空 的链表,表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的,并且每个节点只能存储 一位 数字。 请你将两个数相加,并以相同形式返回一个表示和的链表。 你可以假设除了数字 0 之外&a…

遗传算法解决tsp问题(基于python)

目录 1.遗传算法简要介绍 2.tsp问题简要介绍 3.遗传算法解决tsp问题的几个特殊点 4.源码 1.遗传算法简要介绍 简单来说,遗传算法是用于解决最优化问题的一种搜索算法。其核心基于自然界种群进化的规律,即初始种群进行交配,在基因层面上&am…

elasticsearch 索引库操作和文档操作

文章目录 索引库操作mapping映射属性索引库的CRUD(创建,读取,更新,删除)创建索引库和映射基本语法:示例: 查询索引库修改索引库删除索引库 文档操作新增文档查询文档删除文档修改文档全量修改增…

数据结构 | 堆【图解】

数据结构 | 堆【图解】 文章目录 数据结构 | 堆【图解】堆的概念及结构堆的实现堆的初始化堆的插入【重点】堆的删除【重点】取堆顶的数据堆的数据个数堆的判空堆的销毁 全部代码 堆的概念及结构 堆(heap): 一种有特殊用途的数据结构——用来…

无人智能柜:经营成本低,运维智能化

在现代商业领域中,无人智能柜正逐渐崭露头角,成为一种具有前景的商业模式。其独特之处在于经营成本的低廉性和运维过程的智能化。相较于传统的便利店等实体店铺,无人智能柜在运营过程中不仅能够降低成本,还能够实现高效的运维管理…

【腾讯云云上实验室】向量数据库+LangChain+LLM搭建智慧辅导系统实践

目录 一、搭建智慧辅导系统——向量数据库实践指南1.1、创建向量数据库并新建集合1.2、使用 TKE 快速部署 ChatGLM1.3、部署 LangChain PyPDFVectorDB等组件1.4、配置知识库语料1.5、基于 VectorDB LLM 的智能辅导助手 二、LLM时代的次世代引擎——向量数据库2.1、向量数据库L…

【多线程】-- 02 线程创建之实现Runnable初识多线程并发问题

多线程 2 线程创建 2.2 实现Runnable接口 【学习提示】查看JDK帮助文档 定义MyRunnable类实现Runnable接口实现run()方法,编写线程执行体创建线程对象,调用start()方法启动线程 package com.duo.demo01;//创建线程方式二:实现Runnable接…

Mac开发环境——MacOSX安装与配置Anaconda与PyCharm详细流程

一、安装与使用Anaconda 1.简介 Anaconda 是一个用于数据科学、机器学习和科学计算的开源发行版和包管理器。有许多可用于数据处理、分析和建模的工具和库,并提供了一个方便的环境管理系统。Anaconda 包含了 Python 解释器和许多常用的 Python 包,以及…

Windows环境搭建

Windows环境搭建 一. jdk1.8安装1. 资源链接2. 安装3. 配置环境变量 一. jdk1.8安装 1. 资源链接 资源链接 提取码:tfms 2. 安装 1.双击下载好的JDK,点击下一步。 2.修改默认目录(可不修改),点击下一步, 3. 点击下…

医保线上购药系统:引领医疗新潮流

在科技的驱动下,医疗健康服务正经历一场数字化的革新。医保线上购药系统,不仅是一种医疗服务的新选择,更是技术代码为我们的健康管理带来的全新可能。本文将通过一些简单的技术代码示例,深入解析医保线上购药系统的工作原理和优势…

CleanMyMacX4.14.5macOS电脑系统免费清理工具

CleanMyMac X是一款专业的Mac清理软件,可智能清理mac磁盘垃圾和多余语言安装包,快速释放电脑内存,轻松管理和升级Mac上的应用。同时CleanMyMac X可以强力卸载恶意软件,修复系统漏洞,一键扫描和优化Mac系统,…

Altium Designer学习笔记13

0603电容封装的画法: 再画下三极管SOT-23的三极管的封装图: 画出三极管的封装图: 在画图的过程中,遇到了一个问题,画闭环线路的时候,就会被自动删除,查出是这个地方的配置需要进行修改。 那这个…