机器学习-线性模型·

线性模型是一类用于建模输入特征与输出之间线性关系的统计模型。这类模型的基本形式可以表示为:

y = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_n x_n

其中:
 y是模型的输出(目标变量)。
w_0 是截距(常数项,表示在所有输入特征都为零时的输出值)。
w_1, w_2, \ldots, w_n 是权重,表示每个特征对输出的影响程度。
x_1, x_2, \ldots, x_n 是输入特征。

线性模型的任务是学习适当的权重w_1, w_2, \ldots, w_n ,以最好地拟合训练数据,并对未见过的数据做出准确的预测。线性模型在不同领域中有广泛的应用,包括回归问题和分类问题。

线性模型的训练通常涉及到一个优化问题,目标是最小化损失函数。损失函数可以是均方误差(对于回归问题)交叉熵等(对于分类问题)。优化算法(例如梯度下降)被用于调整权重,使得损失函数达到最小值。

不同类型的线性模型包括:
1. 线性回归(Linear Regression): 用于连续目标变量的预测。
2. 逻辑回归(Logistic Regression):用于二分类问题,输出是概率值。

                            (1) 二分类的线性模型
3. 多项式回归(Polynomial Regression): 扩展线性回归,允许特征的多项式组合。
4. 岭回归(Ridge Regression)和Lasso回归(Lasso Regression): 用于处理特征共线性和过拟合。
5. 支持向量机(Support Vector Machines,SVM): 可用于线性和非线性分类问题。

线性模型的优势在于简单且易于解释,但对于复杂的非线性关系可能表现不佳。在实际应用中,特别是在深度学习等领域的崛起后,线性模型通常被更复杂的模型取代。

示例代码:

# 导入必要的库
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt# 生成示例数据
np.random.seed(42)
# 生成包含随机噪声的输入特征 X 和目标输出 y
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)# 划分数据集
# 将数据集划分为训练集和测试集,80% 用于训练,20% 用于测试
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建并训练线性回归模型
# 创建线性回归模型的实例
model = LinearRegression()
# 使用训练数据对模型进行训练
model.fit(X_train, y_train)# 在测试集上进行预测
# 使用训练好的模型对测试集进行预测
y_pred = model.predict(X_test)# 评估模型性能
# 计算预测值与真实值之间的均方误差
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')# 可视化结果
# 绘制散点图表示真实值,并绘制回归线表示模型的预测
plt.scatter(X_test, y_test, color='black')
plt.plot(X_test, y_pred, color='blue', linewidth=3)
plt.xlabel('X')
plt.ylabel('y')
plt.title('Linear Regression Example')
plt.show()

 结果:

理解线性模型的关键点包括以下几个方面:

1. 基本形式:线性模型的基本形式是通过线性组合表示输入特征和权重,加上一个截距项。这基本方程是模型的基础。

2. 权重和截距:模型中的权重和截距决定了特征对输出的影响程度。权重越大,对应特征对输出的影响越大。

3. 损失函数:训练线性模型通常涉及到定义和优化一个损失函数,目标是使预测值与真实值之间的误差最小化。均方误差是线性回归中常用的损失函数。

4. 优化算法:通过使用梯度下降等优化算法,模型的权重和截距可以被调整,以最小化损失函数。这是模型训练的关键步骤。

5. 适用领域:线性模型在回归和分类问题中广泛应用。线性回归用于预测连续数值,而逻辑回归用于二分类问题。

6. 特殊情况岭回归和Lasso回归是线性模型的变体,用于处理共线性和过拟合问题。它们通过引入正则化项来限制模型参数的大小。

7. 局限性:线性模型的局限性在于它们无法捕捉复杂的非线性关系。在处理非线性问题时,可能需要考虑其他更复杂的模型。

8. 解释性线性模型具有较强的解释性,可以通过权重的大小和符号解释特征对输出的影响。这使得在一些应用场景中,如金融和医疗领域,线性模型仍然是有用的。

总体而言,线性模型是机器学习中一个重要的基础概念,理解线性模型有助于深入理解机器学习的核心原理。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/218861.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在项目中集成marsUI

拷贝文件夹到目标项目 集成 安装相关依赖 npm i --save ant-design-vue4.x npm i less npm i nprogress npm i consola npm i echarts npm i vue-color-kit npm i icon-park/svg npm i vite-plugin-style-import 配置Vite文件 使用 效果

C#,《小白学程序》第二十七课:大数四则运算之“运算符重载”的算法及源程序

1 文本格式 using System; using System.Text; using System.Collections; using System.Collections.Generic; /// <summary> /// 大数的四则&#xff08;加减乘除&#xff09;运算 /// 及其运算符重载&#xff08;取余数&#xff09; /// </summary> public cl…

【经验分享】开发问题记录总结(持续更新)

目录 工具开发 界面类继承某自定义界面类时&#xff0c;出现布局混乱或者所有控件集中在左上角&#xff1f; 在继承自定义界面之后&#xff0c;以诸如 on_xxx_clicked() 模式设计的槽函数失效了? 使用pugi接口取出文本数据后&#xff0c;为什么该变量无法进行字符串比较&…

java协同过滤算法 springboot+vue游戏推荐系统

随着人们生活质量的不断提高以及个人电脑和网络的普及&#xff0c;人们的业余生活质量要求也在不断提高&#xff0c;选择一款好玩&#xff0c;精美&#xff0c;画面和音质&#xff0c;品质优良的休闲游戏已经成为一种流行的休闲方式。可以说在人们的日常生活中&#xff0c;除了…

Ceph----RBD块存储的使用:详细实践过程实战版

RBD 方式的 工作 流程&#xff1a; 1、客户端创建一个pool&#xff0c;并指定pg数量&#xff0c;创建 rbd 设备并map 到文件系统&#xff1b; 2、用户写入数据&#xff0c;ceph进行对数据切块&#xff0c;每个块的大小默认为 4M&#xff0c;每个 块名字是 object序号&#xff…

【智能算法】基于黄金正弦和混沌映射思想的改进减法优化器算法

减法优化器&#xff08;Subtraction-Average-Based Optimizer&#xff0c;SABO&#xff09;是2023年刚出的智能优化算法。目前知网中文期刊基本搜不到&#xff0c;并且可以遇见未来一年文章也很少。SABO算法原理简单&#xff0c;算上初始化粒子&#xff0c;总共不超过6个公式。…

居家适老化设计第三十一条---卫生间水龙头

以上产品图片均来源于淘宝 侵权联系删除 居家适老化中&#xff0c;水龙头是一个非常重要的设备。水龙头的选择应该考虑到老年人的特点和需求。首先&#xff0c;水龙头的操作应该简单方便&#xff0c;老年人手部灵活性可能不如年轻人&#xff0c;因此水龙头应该设计成易于转动和…

Arrays.asList() 与 Collections.singletonList()的恩怨情仇

1. 概述 列表是我们使用 Java 时常用的集合类型。 众所周知&#xff0c;我们可以轻松地用一行初始化一个List。例如&#xff0c;当我们想要初始化一个只有一个元素的List时&#xff0c;我们可以使用Arrays.asList()方法或Collections.singletonList()方法。 在本文中&#x…

Spring Boot整合RabbitMQ

一、简介 在Spring项目中&#xff0c;可以使用Spring-Rabbit去操作RabbitMQ 尤其是在spring boot项目中只需要引入对应的amqp启动器依赖即可&#xff0c;方便的使用RabbitTemplate发送消息&#xff0c;使用注解接收消息。 一般在开发过程中&#xff1a; 生产者工程&#xf…

【ceph】如何打印一个osd的op流程,排查osd在干什么

本站以分享各种运维经验和运维所需要的技能为主 《python零基础入门》&#xff1a;python零基础入门学习 《python运维脚本》&#xff1a; python运维脚本实践 《shell》&#xff1a;shell学习 《terraform》持续更新中&#xff1a;terraform_Aws学习零基础入门到最佳实战 《k8…

如何看待 2023 OPPO 开发者大会?潘塔纳尔进展如何?AndesGPT 有哪些亮点?

在2023年11月16日举行的OPPO开发者大会&#xff08;ODC23&#xff09;上&#xff0c;OPPO带来了全新ColorOS 14、全新互联网服务生态以及健康服务进展&#xff0c;这些新动态中有许多值得关注的地方。 1、全新ColorOS 14&#xff1a; 效率提升&#xff1a;ColorOS 14通过一系列…

【尚跑】2023宝鸡马拉松安全完赛,顺利PB达成

1、赛事背景 千年宝地&#xff0c;一马当先&#xff01;10月15日7时30分&#xff0c;吉利银河2023宝鸡马拉松在宝鸡市行政中心广场鸣枪开跑。 不可忽视的是&#xff0c;这次赛事的卓越之处不仅在于规模和参与人数&#xff0c;还在于其精心的策划和细致入微的组织。为了确保每位…