[数据结构]-红黑树

前言

作者小蜗牛向前冲

名言:我可以接受失败,但我不能接受放弃

  如果觉的博主的文章还不错的话,还请点赞,收藏,关注👀支持博主。如果发现有问题的地方欢迎❀大家在评论区指正

目录

一、红黑树的基本知识

 1、红黑树的概念

2、性质 

二、红黑树的模拟实现 

1、节点的定义

2、红黑树的插入 

三、红黑树的测试

1、验证的准备工作

2、测试用例 

3、完整代码实现 

四、AVL树和红黑树的比较 


本期学习目标:什么是红黑树,红黑树是怎么实现的,红黑树的测试,红黑树和AVL树的对比 

一、红黑树的基本知识

 1、红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或 Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路 径会比其他路径长出俩倍(最长路径吧会超过最短路径的2倍),因而是接近平衡的。

2、性质 

  1. 每个结点不是红色就是黑色。
  2.  根节点是黑色的 。
  3.  如果一个节点是红色的,则它的两个孩子结点是黑色的。(没有连续的红节点)
  4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点 。(每条路径下都包含相同的黑节点)
  5.  每个叶子结点都是黑色的(此处的叶子结点指的是空结点)。

 推论:

  1. 最短路径:全部由黑节点组成
  2. 最长路径:一黑一红,红节点数量 == 黑节点数量

这里我们思考一下,红黑树是如何保证:最长路径不超过最短路径的2倍?

  • 由推论2可知,对于最长路经,就是一红一黑,而且红节点数量等于黑节点数量,
  • 在由推论1可知,最短路径节点数量全为黑。
  • 在由性质4可知,每条路径的黑节点数量都相同,这就保证了最长路径不超过2倍的最短路径。

二、红黑树的模拟实现 

1、节点的定义

enum Colour
{RED,BLACK,
};template<class K,class V>
struct RBTreeNode
{pair<K, V> _kv;RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;Colour _col;RBTreeNode(const pair<K, V>& kv):_kv(kv),_left(nullptr),_right(nullptr),_parent(nullptr),_col(RED){}
};

2、红黑树的插入 

根据节点的定义,我们上面定义了一个枚举类型了存放显色的类型,RED和BLACK,但是我们在插入节点的时候是定义红色还是黑色呢?我们在上面定义的是红色为什么呢?

这里分类讨论一下:

定义新插入节点为黑色

就会破坏性质4,导致每天路径的黑色节点数量不同

定义新插入节点为红色

可能会破坏性质3,导致出现连续的红节点,但是这样也仅仅影响的是一条路径,影响有限。

综上所述:所以我们选择插入节点为红色。

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

1. 按照二叉搜索的树规则插入新节点

2.检测新节点插入后,红黑树的性质是否造到破坏

因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:

约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点(p:parent g:grandfather u:uncle)

当p为g的左孩子时,有3种情况需要讨论

情况1:

 

 情况2:

情况3:

 当p为g的右孩子时,也有3种情况需要讨论

这里的讨论和上面相似,处理方法也相似:

情况1:

情况2: 

情况3:

代码实现:

bool insert(const pair<K, V>& kv)
{if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}//找到插入位置Node* parent = nullptr;Node* cur = _root;while (cur){//到左子树找if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else{return false;}}//找到了cur = new Node(kv);cur->_col = RED;//默认颜色为红色//链接节点if (parent->_kv.first > kv.first){parent->_left = cur;cur->_parent = parent;}else{parent->_right = cur;cur->_parent = parent;}//插入后要调整红黑树//如果父亲存在且为红色while (parent && parent->_col == RED){Node* grandparent = parent->_parent;//情况1:cur为红色,p和u都为红色,g为黑色,这里的u是存在的//解决方法:p和n都变黑,g变红,在把cur当做g继续调整if (parent == grandparent->_left){Node* uncle = grandparent->_right;if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandparent->_col = RED;cur = grandparent;//更新parentparent = cur->_parent;}else//情况2+3  uncle存在且为黑色或者uncle不存在{if (cur == parent->_left){//情况2//解决方法:右单旋,将p变黑,g变红RotateR(grandparent);parent->_col = BLACK;grandparent->_col = RED;}else//情况3:双旋转{RotateL(parent);RotateR(grandparent);grandparent->_col = RED;cur->_col = BLACK;//双旋转后cur变为了根}//这里类比根节点为色,不需要在调整了break;}}else//grandparent->right == parent{//这里也是和上面一样分为三种情况Node* grandparent = parent->_parent;Node* uncle = grandparent->_left;if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandparent->_col = RED;cur = grandparent;//更新parentparent = cur->_parent;}else{if (cur == parent->_right){RotateL(grandparent);//左单旋转parent->_col = BLACK;grandparent->_col = RED;}else{RotateR(parent);RotateL(grandparent);grandparent->_col = RED;cur->_col = BLACK;//双旋转后cur变为了根}break;}}}//调整完成,把根节点变黑_root->_col = BLACK;return true;
}
//右单旋
void RotateR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;Node* grandparent = parent->_parent;//让subLR变为parent的左,parent->_left = subLR;//这里要判断一下subLR不为空if (subLR){subLR->_parent = parent;}//parent变为subL的右subL->_right = parent;parent->_parent = subL;//parent就是为根if (grandparent == nullptr){_root = subL;subL->_parent = grandparent;}else{//parnet是上grandparent的左子树if (grandparent->_left == parent){grandparent->_left = subL;}else{grandparent->_right = subL;}subL->_parent = grandparent;}
}//左单旋
void RotateL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;Node* ppNode = parent->_parent;parent->_right = subRL;if (subRL){subRL->_parent = parent;}subR->_left = parent;parent->_parent = subR;//parnet为根,要更新根if (ppNode == nullptr){_root = subR;subR->_parent = ppNode;}else{if (ppNode->_left == parent){ppNode->_left = subR;}else{ppNode->_right = subR;}subR->_parent = ppNode;}
}

三、红黑树的测试

1、验证的准备工作

  1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)

  2. 检测其是否满足红黑树的性质
    检测方法:
    1、根节点是黑色,否则不是红黑树
    2、当前节点是红色,去检测父亲节点,父亲节点也是红色,则不是红黑树
    3、以最左侧路径的黑色节点为基准,其它路径上的黑色节点与基准不相等,不是红黑树

 检验代码:

void Inorder()
{_Inorder(_root);
}void _Inorder(Node* root)
{if (root == nullptr)return;_Inorder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_Inorder(root->_right);
}bool Check(Node* root, int blackNum, const int ref)
{if (root == nullptr){//已经递归到最深处进行,本路径的黑节点树和ref数量对比if (blackNum != ref){cout << "违反规则:本条路径的黑色节点的数量跟最左路径不相等" << endl;return false;}return true;}if (root->_col == RED && root->_parent->_col == RED){cout << "违反规则:出现连续红色节点" << endl;return false;}if (root->_col == BLACK){++blackNum;}return Check(root->_left, blackNum, ref)&& Check(root->_right, blackNum, ref);
}bool IsBalance()
{if (_root == nullptr){return true;}if (_root->_col != BLACK){return false;}//求出最左路节点有多少个黑节点int ref = 0;Node* left = _root;while (left){if (left->_col == BLACK){++ref;}left = left->_left;}return Check(_root, 0, ref);
}

2、测试用例 

这里我们借用上面AVL树的测试用例即可

void TestRBTree1()
{//int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };//int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };RBTreeh<int, int> t;for (auto e : a){/*if (e == 18){int x = 0;}*/t.insert(make_pair(e, e));cout << "insert" << e << ":" << t.IsBalance() << endl;}t.Inorder();cout << t.IsBalance() << endl;
}void TestRBTree2()
{srand(time(0));const size_t N = 100000;RBTreeh<int, int> t;for (size_t i = 0; i < N; ++i){size_t x = rand();t.insert(make_pair(x, x));//cout << t.IsBalance() << endl;}//t.Inorder();cout << t.IsBalance() << endl;
}

3、完整代码实现 

#pragma onceenum Colour
{RED,BLACK,
};template<class K,class V>
struct RBTreeNode
{pair<K, V> _kv;RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;Colour _col;RBTreeNode(const pair<K, V>& kv):_kv(kv),_left(nullptr),_right(nullptr),_parent(nullptr),_col(RED){}
};template<class K,class V>
class RBTreeh
{typedef RBTreeNode<K,V> Node;
public:bool insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}//找到插入位置Node* parent = nullptr;Node* cur = _root;while (cur){//到左子树找if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else{return false;}}//找到了cur = new Node(kv);cur->_col = RED;//默认颜色为红色//链接节点if (parent->_kv.first > kv.first){parent->_left = cur;cur->_parent = parent;}else{parent->_right = cur;cur->_parent = parent;}//插入后要调整红黑树//如果父亲存在且为红色while (parent && parent->_col == RED){Node* grandparent = parent->_parent;//情况1:cur为红色,p和u都为红色,g为黑色,这里的u是存在的//解决方法:p和n都变黑,g变红,在把cur当做g继续调整if (parent == grandparent->_left){Node* uncle = grandparent->_right;if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandparent->_col = RED;cur = grandparent;//更新parentparent = cur->_parent;}else//情况2+3  uncle存在且为黑色或者uncle不存在{if (cur == parent->_left){//情况2//解决方法:右单旋,将p变黑,g变红RotateR(grandparent);parent->_col = BLACK;grandparent->_col = RED;}else//情况3:双旋转{RotateL(parent);RotateR(grandparent);grandparent->_col = RED;cur->_col = BLACK;//双旋转后cur变为了根}//这里类比根节点为色,不需要在调整了break;}}else//grandparent->right == parent{//这里也是和上面一样分为三种情况Node* grandparent = parent->_parent;Node* uncle = grandparent->_left;if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandparent->_col = RED;cur = grandparent;//更新parentparent = cur->_parent;}else{if (cur == parent->_right){RotateL(grandparent);//左单旋转parent->_col = BLACK;grandparent->_col = RED;}else{RotateR(parent);RotateL(grandparent);grandparent->_col = RED;cur->_col = BLACK;//双旋转后cur变为了根}break;}}}//调整完成,把根节点变黑_root->_col = BLACK;return true;}//右单旋void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;Node* grandparent = parent->_parent;//让subLR变为parent的左,parent->_left = subLR;//这里要判断一下subLR不为空if (subLR){subLR->_parent = parent;}//parent变为subL的右subL->_right = parent;parent->_parent = subL;//parent就是为根if (grandparent == nullptr){_root = subL;subL->_parent = grandparent;}else{//parnet是上grandparent的左子树if (grandparent->_left == parent){grandparent->_left = subL;}else{grandparent->_right = subL;}subL->_parent = grandparent;}}//左单旋void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;Node* ppNode = parent->_parent;parent->_right = subRL;if (subRL){subRL->_parent = parent;}subR->_left = parent;parent->_parent = subR;//parnet为根,要更新根if (ppNode == nullptr){_root = subR;subR->_parent = ppNode;}else{if (ppNode->_left == parent){ppNode->_left = subR;}else{ppNode->_right = subR;}subR->_parent = ppNode;}}void Inorder(){_Inorder(_root);}void _Inorder(Node* root){if (root == nullptr)return;_Inorder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_Inorder(root->_right);}bool Check(Node* root, int blackNum, const int ref){if (root == nullptr){//已经递归到最深处进行,本路径的黑节点树和ref数量对比if (blackNum != ref){cout << "违反规则:本条路径的黑色节点的数量跟最左路径不相等" << endl;return false;}return true;}if (root->_col == RED && root->_parent->_col == RED){cout << "违反规则:出现连续红色节点" << endl;return false;}if (root->_col == BLACK){++blackNum;}return Check(root->_left, blackNum, ref)&& Check(root->_right, blackNum, ref);}bool IsBalance(){if (_root == nullptr){return true;}if (_root->_col != BLACK){return false;}//求出最左路节点有多少个黑节点int ref = 0;Node* left = _root;while (left){if (left->_col == BLACK){++ref;}left = left->_left;}return Check(_root, 0, ref);}
private:Node* _root = nullptr;};void TestRBTree1()
{//int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };//int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };RBTreeh<int, int> t;for (auto e : a){/*if (e == 18){int x = 0;}*/t.insert(make_pair(e, e));cout << "insert" << e << ":" << t.IsBalance() << endl;}t.Inorder();cout << t.IsBalance() << endl;
}//void TestRBTree2()
//{
//	srand(time(0));
//	const size_t N = 100000;
//	RBTreeh<int, int> t;
//	for (size_t i = 0; i < N; ++i)
//	{
//		size_t x = rand();
//		t.insert(make_pair(x, x));
//		//cout << t.IsBalance() << endl;
//	}
//
//	//t.Inorder();
//	cout << t.IsBalance() << endl;
//}

四、AVL树和红黑树的比较 

AVL树(Adelson-Velsky and Landis tree)和红黑树都是自平衡的二叉搜索树,它们在维持树的平衡性上采用了不同的策略。以下是它们之间的一些比较:

  1. 平衡性维护策略:

    • AVL树: 通过保持任意节点的左右子树的高度差(平衡因子)不超过1来维护平衡。在每次插入或删除操作后,可能需要旋转来恢复平衡。
    • 红黑树: 通过引入额外的颜色信息和一些规则,确保树的高度保持在较小的范围内。具体来说,红黑树的平衡性维护是通过节点的颜色和一些颜色约束来实现的。
  2. 平衡因子和颜色信息:

    • AVL树: 使用平衡因子(Balance Factor)来表示每个节点左右子树的高度差。通常,平衡因子为 -1、0、1。
    • 红黑树: 使用颜色信息(红色或黑色)来表示树的平衡状态。通过遵循红黑树的性质,确保了树的平衡。
  3. 旋转操作:

    • AVL树: 插入或删除可能需要执行多次旋转操作,包括左旋、右旋、左右旋、右左旋等。
    • 红黑树: 插入或删除通常只需要执行一到两次旋转操作,因为红黑树引入了颜色信息,更灵活地维持平衡。
  4. 性能影响:

    • AVL树: 由于 AVL 树对平衡的要求更为严格,因此在插入和删除等操作时可能会导致更多的旋转,相对来说更耗费性能。
    • 红黑树: 由于其相对宽松的平衡条件,红黑树在插入和删除等操作时通常执行的旋转较少,因此性能可能相对更好。
  5. 应用场景:

    • AVL树: 适用于对搜索性能有较高要求的场景,例如在数据库中需要快速检索数据。
    • 红黑树: 通常在需要高效的插入和删除操作的情况下使用,例如在集合类的实现中。

总体而言,选择 AVL 树还是红黑树取决于应用的特定需求。如果搜索操作远远超过插入和删除,可能更倾向于使用 AVL 树。而在插入和删除操作频繁的情况下,红黑树可能更为适用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/218957.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

身在苹果心系Linux:Linux基金会主管在开源峰会使用macOS做演示

2017开源峰会正在进行中&#xff0c;来自全球各地的Linux大厂和开源大厂纷纷涌向洛杉矶参加这次活动。 Linux基金会执行董事Jim Zemlin在推文中宣布&#xff1a;2017年是属于Linux桌面的一年&#xff01; ▲图片来源&#xff1a;itsfoss.com 然而&#xff0c;据外媒itsfoss报…

【开源】基于Vue和SpringBoot的数字化社区网格管理系统

项目编号&#xff1a; S 042 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S042&#xff0c;文末获取源码。} 项目编号&#xff1a;S042&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、开发背景四、系统展示五、核心源码5…

计算器的模拟实现

计算器的模拟实现 一、实验题目&#xff1a;计算器二&#xff1a;实验目的&#xff1a;三&#xff1a;实验内容与实现1&#xff1a;【实验内容】2&#xff1a;【实验实现】1.计算器界面的实现&#xff0c;如下图所示&#xff1a;2&#xff1a;各项功能的实现&#xff0c;如下图…

JVM——垃圾回收(方法区中的垃圾回收和(堆回收)自动垃圾回收)

目录 1.自动垃圾回收介绍1.C/C的内存管理2.Java的内存管理3.垃圾回收的对比 2.方法区的回收方法区的回收 – 手动触发回收 3.堆回收1.引用计数法2.可达性分析算法 1.自动垃圾回收介绍 1.C/C的内存管理 ⚫ 在C/C这类没有自动垃圾回收机制的语言中&#xff0c;一个对象如果不再…

过渡曲线的构造之平面PH曲线

平面PH曲线的构造及其相应性质 平面PH曲线的构造及其相应性质PH曲线理论三次PH曲线的构造及性质四次PH曲线的构造及性质五次PH曲线的构造及性质非尖点五次PH曲线尖点五次PH曲线 参考文献 平面PH曲线的构造及其相应性质 过渡曲线常需要满足在连接点处位置连续、曲率连续以及切线…

韵达快递查询,韵达快递单号查询,一键筛选出单号中的退回件

批量查询韵达快递单号的物流信息&#xff0c;并将其中的退回件一键筛选出来。 所需工具&#xff1a; 一个【快递批量查询高手】软件 韵达快递单号若干 操作步骤&#xff1a; 步骤1&#xff1a;运行【快递批量查询高手】软件&#xff0c;第一次使用的朋友记得先注册&#xff…

文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《基于多尺度分量特征学习的用户级超短期负荷预测》

这篇文章的标题表明研究的主题是用户级超短期负荷预测&#xff0c;并且该预测方法基于多尺度分量特征学习。让我们逐步解读这个标题&#xff1a; 用户级&#xff1a; 这表示研究的焦点是在个体用户层面上进行的。负荷预测可能是指电力系统中的负荷&#xff0c;即电力需求。用户…

队列详解(C语言实现)

文章目录 写在前面1 队列的定义2 队列的初始化3 数据入队列4 数据出队列5 获取队头元素6 获取队尾元素7 获取队列元素个数8 判断队列是否为空8 队列的销毁 写在前面 本片文章详细介绍了另外两种存储逻辑关系为 “一对一” 的数据结构——栈和队列中的队列&#xff0c;并使用C语…

Visual Studio 使用MFC 单文档工程绘制单一颜色直线和绘制渐变颜色的直线(实例分析)

Visual Studio 使用MFC 单文档工程从创建到实现绘制单一颜色直线和绘制渐变颜色的直线 本文主要从零开始创建一个MFC单文档工程然后逐步实现添加按键&#xff08;事件响应函数&#xff09;&#xff0c;最后实现单一颜色直线的绘制与渐变色直线的绘制o(&#xffe3;▽&#xffe…

【服务器能干什么】二十分钟搭建一个属于自己的 RSS 服务

如果大家不想自己捣鼓,只是想尝尝鲜,可以在下面留言,我后台帮大家开几个账号玩一玩。 哔哩哔哩【高清版本可以点击去吐槽到 B 站观看】:【VPS服务器到底能干啥】信息爆炸的年代,如何甄别出优质的内容?你可能需要自建一个RSS服务!_哔哩哔哩_bilibili 前言 RSS 服务 市…

五种多目标优化算法(MOPSO、MOAHA、NSGA2、NSGA3、MOGWO)求解微电网多目标优化调度(MATLAB)

一、多目标优化算法简介 &#xff08;1&#xff09;多目标粒子群优化算法MOPSO 多目标应用&#xff1a;基于多目标粒子群优化算法MOPSO求解微电网多目标优化调度&#xff08;MATLAB代码&#xff09;-CSDN博客 &#xff08;2&#xff09;多目标人工蜂鸟算法&#xff08;MOAHA…

电子学会C/C++编程等级考试2021年12月(二级)真题解析

C/C++等级考试(1~8级)全部真题・点这里 第1题:统计指定范围里的数 给定一个数的序列S,以及一个区间[L, R], 求序列中介于该区间的数的个数,即序列中大于等于L且小于等于R的数的个数。 时间限制:1000 内存限制:65536输入 第一行1个整数n、,分别表示序列的长。(0 < n…