【深度学习笔记】04 概率论基础

04 概率论基础

    • 概率论公理
    • 联合概率
    • 条件概率
    • 贝叶斯定理
    • 边际化
    • 独立性
    • 期望和方差
    • 模拟投掷骰子的概率随投掷次数增加的变化

概率论公理

概率(probability)可以被认为是将集合映射到真实值的函数。
在给定的样本空间 S \mathcal{S} S中,事件 A \mathcal{A} A的概率,
表示为 P ( A ) P(\mathcal{A}) P(A),满足以下属性:

  • 对于任意事件 A \mathcal{A} A,其概率从不会是负数,即 P ( A ) ≥ 0 P(\mathcal{A}) \geq 0 P(A)0
  • 整个样本空间的概率为 1 1 1,即 P ( S ) = 1 P(\mathcal{S}) = 1 P(S)=1
  • 对于互斥(mutually exclusive)事件(对于所有 i ≠ j i \neq j i=j都有 A i ∩ A j = ∅ \mathcal{A}_i \cap \mathcal{A}_j = \emptyset AiAj=)的任意一个可数序列 A 1 , A 2 , … \mathcal{A}_1, \mathcal{A}_2, \ldots A1,A2,,序列中任意一个事件发生的概率等于它们各自发生的概率之和,即 P ( ⋃ i = 1 ∞ A i ) = ∑ i = 1 ∞ P ( A i ) P(\bigcup_{i=1}^{\infty} \mathcal{A}_i) = \sum_{i=1}^{\infty} P(\mathcal{A}_i) P(i=1Ai)=i=1P(Ai)

联合概率

P ( A = a , B = b ) P(A=a,B=b) P(A=a,B=b)

给定任意值 a a a b b b,联合概率可以回答: A = a A=a A=a B = b B=b B=b同时满足的概率是多少?

对于任何 a a a b b b的取值, P ( A = a , B = b ) ≤ P ( A = a ) P(A = a, B=b) \leq P(A=a) P(A=a,B=b)P(A=a)

条件概率

0 ≤ P ( A = a , B = b ) P ( A = a ) ≤ 1 0 \leq \frac{P(A=a, B=b)}{P(A=a)} \leq 1 0P(A=a)P(A=a,B=b)1
我们称这个比率为条件概率(conditional probability),
并用 P ( B = b ∣ A = a ) P(B=b \mid A=a) P(B=bA=a)表示它:它是 B = b B=b B=b的概率,前提是 A = a A=a A=a已发生。

贝叶斯定理

根据乘法法则(multiplication rule )可得到 P ( A , B ) = P ( B ∣ A ) P ( A ) P(A, B) = P(B \mid A) P(A) P(A,B)=P(BA)P(A)
根据对称性,可得到 P ( A , B ) = P ( A ∣ B ) P ( B ) P(A, B) = P(A \mid B) P(B) P(A,B)=P(AB)P(B)
假设 P ( B ) > 0 P(B)>0 P(B)>0,求解其中一个条件变量,我们得到

P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) . P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}. P(AB)=P(B)P(BA)P(A).

其中 P ( A , B ) P(A, B) P(A,B)是一个联合分布(joint distribution),
P ( A ∣ B ) P(A \mid B) P(AB)是一个条件分布(conditional distribution)。
这种分布可以在给定值 A = a , B = b A = a, B=b A=a,B=b上进行求值。

边际化

为了能进行事件概率求和,需要求和法则(sum rule),
B B B的概率相当于计算 A A A的所有可能选择,并将所有选择的联合概率聚合在一起:

P ( B ) = ∑ A P ( A , B ) , P(B) = \sum_{A} P(A, B), P(B)=AP(A,B),

这也称为边际化(marginalization)。
边际化结果的概率或分布称为边际概率(marginal probability)
边际分布(marginal distribution)。

独立性

如果两个随机变量 A A A B B B是独立的,意味着事件 A A A的发生跟 B B B事件的发生无关。
在这种情况下,通常将这一点表述为 A ⊥ B A \perp B AB
根据贝叶斯定理,马上就能同样得到 P ( A ∣ B ) = P ( A ) P(A \mid B) = P(A) P(AB)=P(A)
在所有其他情况下,我们称 A A A B B B依赖。

由于 P ( A ∣ B ) = P ( A , B ) P ( B ) = P ( A ) P(A \mid B) = \frac{P(A, B)}{P(B)} = P(A) P(AB)=P(B)P(A,B)=P(A)等价于 P ( A , B ) = P ( A ) P ( B ) P(A, B) = P(A)P(B) P(A,B)=P(A)P(B)
因此两个随机变量是独立的,当且仅当两个随机变量的联合分布是其各自分布的乘积。
同样地,给定另一个随机变量 C C C时,两个随机变量 A A A B B B条件独立的(conditionally independent),
当且仅当 P ( A , B ∣ C ) = P ( A ∣ C ) P ( B ∣ C ) P(A, B \mid C) = P(A \mid C)P(B \mid C) P(A,BC)=P(AC)P(BC)
这个情况表示为 A ⊥ B ∣ C A \perp B \mid C ABC

期望和方差

一个随机变量 X X X期望(expectation,或平均值(average))表示为

E [ X ] = ∑ x x P ( X = x ) . E[X] = \sum_{x} x P(X = x). E[X]=xxP(X=x).

当函数 f ( x ) f(x) f(x)的输入是从分布 P P P中抽取的随机变量时, f ( x ) f(x) f(x)的期望值为

E x ∼ P [ f ( x ) ] = ∑ x f ( x ) P ( x ) . E_{x \sim P}[f(x)] = \sum_x f(x) P(x). ExP[f(x)]=xf(x)P(x).

在许多情况下,我们希望衡量随机变量 X X X与其期望值的偏置。这可以通过方差来量化

V a r [ X ] = E [ ( X − E [ X ] ) 2 ] = E [ X 2 ] − E [ X ] 2 . \mathrm{Var}[X] = E\left[(X - E[X])^2\right] = E[X^2] - E[X]^2. Var[X]=E[(XE[X])2]=E[X2]E[X]2.

方差的平方根被称为标准差(standard deviation)。

随机变量函数的方差衡量的是:当从该随机变量分布中采样不同值 x x x时,
函数值偏离该函数的期望的程度:

V a r [ f ( x ) ] = E [ ( f ( x ) − E [ f ( x ) ] ) 2 ] . \mathrm{Var}[f(x)] = E\left[\left(f(x) - E[f(x)]\right)^2\right]. Var[f(x)]=E[(f(x)E[f(x)])2].

模拟投掷骰子的概率随投掷次数增加的变化

%matplotlib inline
import torch
from torch.distributions import multinomial
from d2l import torch as d2l

为了抽取像本,即掷骰子,我们只需为了抽取一个样本,
输出是另一个相同长度的向量:它在索引 i i i处的值是采样结果中 i i i出现的次数。

fair_probs = torch.ones([6]) / 6
multinomial.Multinomial(1, fair_probs).sample()
tensor([0., 1., 0., 0., 0., 0.])

使用PyTorch框架的函数同时抽取多个样本,得到我们想要的任意形状的独立样本数组

multinomial.Multinomial(10, fair_probs).sample()
tensor([3., 2., 0., 3., 1., 1.])

模拟1000次投掷,
然后统计1000次投掷后,每个数字被投中了多少次。

# 将结果存储为32位浮点数以进行除法
counts = multinomial.Multinomial(1000, fair_probs).sample()
counts / 1000  # 相对频率作为估计值
tensor([0.1650, 0.1650, 0.1720, 0.1750, 0.1610, 0.1620])

进行500组实验,每组抽取10个样本。

counts = multinomial.Multinomial(10, fair_probs).sample((500,))
cum_counts = counts.cumsum(dim=0)
estimates = cum_counts / cum_counts.sum(dim=1, keepdims=True)d2l.set_figsize((6, 4.5))
for i in range(6):d2l.plt.plot(estimates[:, i].numpy(),label=("P(die=" + str(i + 1) + ")"))
d2l.plt.axhline(y=0.167, color='black', linestyle='dashed')
d2l.plt.gca().set_xlabel('Groups of experiments')
d2l.plt.gca().set_ylabel('Estimated probability')
d2l.plt.legend();

在这里插入图片描述

每条实线对应于骰子的6个值中的一个,并给出骰子在每组实验后出现值的估计概率。
当我们通过更多的实验获得更多的数据时,这 6 6 6条实体曲线向真实概率收敛。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/219017.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

人工智能时代的内容写作

内容不再只是王道,正如俗话所说:它是一种流动的货币,推动了巨大的在线信息和影响力经济。 每个品牌都是一个故事,通过其服务和商品讲述自己。尽管如此,大多数客户还是会通过您的在线内容最了解您。 但随着我们进入人…

常见树种(贵州省):016杜鹃、含笑、桃金娘、金丝桃、珍珠花、观光木

摘要:本专栏树种介绍图片来源于PPBC中国植物图像库(下附网址),本文整理仅做交流学习使用,同时便于查找,如有侵权请联系删除。 图片网址:PPBC中国植物图像库——最大的植物分类图片库 一、杜鹃 …

武汉数字孪生赋能工业制造,加速推进制造业数字化转型

随着数字孪生技术的不断推进,互联网、物联网、智能传感技术开始应用到数控机床的远程服务,状态监控,故障诊断,维护管理等方面。武汉数字孪生是在虚拟空间中创建物理对象的高保真虚拟模型,以模拟其在现实世界中的行为提…

Java核心知识点整理大全15-笔记

Java核心知识点整理大全-笔记_希斯奎的博客-CSDN博客 Java核心知识点整理大全2-笔记_希斯奎的博客-CSDN博客 Java核心知识点整理大全3-笔记_希斯奎的博客-CSDN博客 Java核心知识点整理大全4-笔记-CSDN博客 Java核心知识点整理大全5-笔记-CSDN博客 Java核心知识点整理大全6…

靡靡之音 天籁之声 ——Adobe Audition

上一期讲到了和Pr配合使用的字幕插件Arctime Pro的相关介绍。相信还记得的小伙伴应该记得我还提到过一个软件叫做Au。 当人们对字幕需求的逐渐满足,我们便开始追求更高层次的享受,当视觉享受在进步,听觉享受想必也不能被落下! Au即…

使用skforecast进行时间序列预测

时间序列预测是数据科学和商业分析中基于历史数据预测未来价值的一项重要技术。它有着广泛的应用,从需求规划、销售预测到计量经济分析。由于Python的多功能性和专业库的可用性,它已经成为一种流行的预测编程语言。其中一个为时间序列预测任务量身定制的…

2023年3月电子学会青少年软件编程 Python编程等级考试一级真题解析(判断题)

2023年3月Python编程等级考试一级真题解析 判断题(共10题,每题2分,共20分) 26、在Python编程中,print的功能是将print()小括号的内容输出到控制台,比如:在Python Shell中输入print(北京,你好)指令,小括号内容可以输出到控制台 答案:错 考点分析:考查python中print…

《微信小程序开发从入门到实战》学习三十一

3.4 开发参与投票页面 3.4.9 显示投票结果 在实际使用中,一个用户不能对同一个投票进行重复提交,因此需要向服务器端提交投票结果和提交用户ID。另外页面,需要完善。用户提交完投票后 ,还需要显示投票目前的结果,提交…

python 基于opencv和face_recognition的人脸识别

python 基于opencv和face_recognition的人脸识别 代码如下: 使用一个photos存放你需要识别的照片,注意一个人一张就行 然后通过下面代码注册用户,之后启动程序,就会调用摄像头进行识别了。 AddPhoto(“发哥”, “./photos/fag…

Docker Swarm总结+CI/CD Devops、gitlab、sonarqube以及harbor的安装集成配置(3/4)

博主介绍:Java领域优质创作者,博客之星城市赛道TOP20、专注于前端流行技术框架、Java后端技术领域、项目实战运维以及GIS地理信息领域。 🍅文末获取源码下载地址🍅 👇🏻 精彩专栏推荐订阅👇🏻…

面向对象的三大特征

目录 封装(Encapsulation): 继承(Inheritance): 多态(Polymorphism): 封装(Encapsulation): 定义: 封装是将对象的状态…

FreeRTOS入门教程(任务通知)

文章目录 前言一、什么是任务通知二、任务通知和队列,信号量的区别三、任务通知的优点和缺点1.优点2.缺点 四、任务状态和通知值五、任务通知相关的函数发出通知取出通知 六、任务通知具体使用1.实现轻量级信号量二进制信号量计数型信号量 2.实现轻量级队列 总结 前…