智能优化算法应用:基于海鸥算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于海鸥算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于海鸥算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.海鸥算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用海鸥算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.海鸥算法

海鸥算法原理请参考:https://blog.csdn.net/u011835903/article/details/107535864
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

海鸥算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明海鸥算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/219496.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

torch.nn.batchnorm1d,torch.nn.batchnorm2d,torch.nn.LayerNorm解释:

批量归一化是一种加速神经网络训练和提升模型泛化能力的技术。它对每个特征维度进行标准化处理,即调整每个特征的均值和标准差,使得它们的分布更加稳定。 Batch Norm主要是为了让输入在激活函数的敏感区。所以BatchNorm层要加在激活函数前面。 1.torch.…

【Linux学习笔记】protobuf 基本数据编码

https://zhuanlan.zhihu.com/p/557457644https://zhuanlan.zhihu.com/p/557457644 [新文导读] 从Base64到Protobuf,详解Protobuf的数据编码原理本篇将从Base64再到Base128编码,带你一起从底层来理解Protobuf的数据编码原理。本文结构总体与 Protobuf 官…

怎样提升伦敦银买卖技巧?

如果投资者想提升伦敦银的买卖技巧,可以学习一些有用的技术分析方法。所谓技术分析,就是通过对行情过往价格和相关交易数据进行收集,用图表的方式解读白银市场,进而预测行情未来主线走势、判断价格细节变化、寻找重要支撑点阻力点…

养生馆服务预约会员管理系统小程序效果如何

中医养生馆的全国数量逐渐增加,各种疾病困扰下,有些病往往通过养生馆即可治好,比如常见的针灸、按摩、药理滋补、切脉等,都有很高的市场需求度,而随着众多商家入局赛道及消费升级,传统中医养生馆经营痛点也…

【华为OD】B\C卷真题:100%通过:找城市 C/C++实现

【华为OD】B\C卷真题:100%通过:找城市 C/C实现 题目描述: 一张地图上有n个城市,城市和城市之间有且只有一条道路相连:要么直接相连,要么通过其它城市中转相连(可中转一次或多次)。…

Redis面试题:redis做为缓存,数据的持久化是怎么做的?两种持久化方式有什么区别呢?这两种方式,哪种恢复的比较快呢?

目录 面试官:redis做为缓存,数据的持久化是怎么做的? 面试官:这两种持久化方式有什么区别呢? 面试官:这两种方式,哪种恢复的比较快呢? 面试官:redis做为缓存&#xff…

C语言基础介绍

1. C语言基础知识 C语言是一种计算机编程语言,是一门用于编写系统软件和应用软件的高级语言。C语言的基础知识包括: 数据类型:C语言中的数据类型包括整型、浮点型、字符型等。 变量:C语言中使用变量来存储数据,变量必…

使用JS脚本刷点击率

使用JS脚本刷点击率 1.使用谷歌浏览器,登录国开平台,打开《管理学基础》课程导学的“学什么”,保证看得到右下角的“下一个”,然后在“下一个”右键点检查。 2.复制以下JS代码,在右上角“Console”标签(…

网络篇---第一篇

系列文章目录 文章目录 系列文章目录前言一、HTTP 响应码有哪些?分别代表什么含义?二、Forward 和 Redirect 的区别?三、Get 和 Post 请求有哪些区别?前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男…

高并发内存池

1.什么是内存池 内存池动态内存分配与管理技术,对于程序员来说,通常情况下,动态申请内存需要使用new,delete,malloc,free这些API来申请,这样导致的后果是,当程序长时间运行之后,由于程序运行时所申请的内存…

Python之基础语法和六大数据类型

学习的最大理由是想摆脱平庸,早一天就多一份人生的精彩;迟一天就多一天平庸的困扰。各位小伙伴,如果您: 想系统/深入学习某技术知识点… 一个人摸索学习很难坚持,想组团高效学习… 想写博客但无从下手,急需…