【青蛙跳台阶问题 —— (三种算法)】

青蛙跳台阶问题 —— (三种算法)

  • 一.题目介绍
    • 1.1.题目
    • 1.2.图示
  • 二.解题思路
  • 三.题解及其相关算法
    • 3.1.递归分治法
    • 3.2.动态规划算法(Dynamic Programming)
    • 3.3.斐波那契数列法
  • 四.注意细节

一.题目介绍

1.1.题目

一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1:
输入:n = 2
输出:2

示例 2:
输入:n = 7
输出:21

示例 3:
输入:n = 0
输出:1

提示:
0 <= n <= 100

1.2.图示

在这里插入图片描述

二.解题思路

此类求多少种可能性 的题目一般都有递推性质 ,即 f(n)和 f(n-1)…f(1)之间是有联系的。
设跳上 n级台阶有 f(n)种跳法。在所有跳法中,青蛙的最后一步只有两种情况: 跳上1级或 2级台阶。
当为 1级台阶: 剩 n-1个台阶,此情况共有 f(n-1)种跳法;
当为 2级台阶: 剩 n-2个台阶,此情况共有 f(n-2)种跳法。
f(n)为以上两种情况之和,即 f(n)=f(n-1)+f(n-2),以上递推性质为斐波那契数列。本题可转化为求斐波那契数列第 n项的值 ,与斐波那契数列等价,唯一的不同在于起始数字不同。
青蛙跳台阶问题: f(0)=1 , f(1)=1, f(2)=2;
斐波那契数列问题: f(0)=0 , f(1)=1, f(2)=1。

在这里插入图片描述

三.题解及其相关算法

斐波那契数列的定义是 f(n + 1) = f(n) + f(n - 1),生成第n项的做法有以下几种:

3.1.递归分治法

递归分治法:
原理: 把 f(n)问题的计算拆分成 f(n-1)和 f(n-2)两个子问题的计算,并递归,以 f(0)和 f(1)为终止条件。
缺点: 大量重复的递归计算,例如 f(n)和 f(n - 1)两者向下递归都需要计算 f(n - 2)的值。
这个程序的时间复杂度为 O(2^n),因为我们需要递归地计算从 1 到 n 的所有整数的和。在输入的楼梯数较大时,程序可能会运行超时。

#include <stdio.h>int climbStairs(int n) {int con=(int)1e9 + 7;if (n == 1) {return 1;}else if (n == 2) {return 2;}else {return climbStairs(n - 1)%con + climbStairs(n - 2)%con;}
}int main() {int n;printf("请输入楼梯的阶数:");scanf("%d", &n);int ways = climbStairs(n);printf("%d 阶楼梯一共有 %d 种跳法。\n", n, ways);return 0;
}

在这里插入图片描述

3.2.动态规划算法(Dynamic Programming)

动态规划算法(Dynamic Programming)(记忆化递归法)
动态规划: 是一种用于解决多阶段决策问题的算法,它通过将问题分解为更小的子问题,并通过存储已经解决的子问题的结果来避免重复计算。
原理: 在递归法的基础上,新建一个长度为 n的数组,用于在递归时存储 f(0)至 f(n)的数字值,重复遇到某数字时则直接从数组取用,避免了重复的递归计算。
缺点: 记忆化存储的数组需要使用 O(N)的额外空间。

#define MAX 100
int ClimbStairs(int number)
{int con = (int)1e9 + 7;if (number == 1)return 1;else if (number == 2)return 2;else{int dp[MAX];dp[1] = 1;dp[2] = 2;int i = 0;for (i = 3; i <= number; i++){dp[i] = dp[i - 1] % con + dp[i - 2] % con;}return dp[number];}
}int main() {int n;printf("请输入楼梯的阶数:");scanf("%d", &n);int ways = climbStairs(n);printf("%d 阶楼梯一共有 %d 种跳法。\n", n, ways);return 0;
}

在这里插入图片描述

3.3.斐波那契数列法

斐波那契数列法:
原理: 以斐波那契数列性质 f(n + 1) = f(n) + f(n - 1)为转移方程。
从计算效率、空间复杂度上看,斐波那契数列法是本题的最佳解法。

int fbnq(int n)
{int con = (int)1e9 + 7;int first = 0;int second = 1;int tem = 0;while (n--){tem = first + second;first = second % con;second = tem % con;}return first;
}
int ClimbStairs(int n) {return fbnq(n + 1);
}
int main() {int n;printf("请输入楼梯的阶数:");scanf("%d", &n);int ways = ClimbStairs(n);printf("%d 阶楼梯一共有 %d 种跳法。\n", n, ways);return 0;
}

在这里插入图片描述

四.注意细节

为什么要模1000000007。
参考:https://link.zhihu.com/?target=https%3A//www.liuchuo.net/archives/645
大数相乘,大数的排列组合等为什么要取模
一、1000000007是一个质数(素数),对质数取余能最大程度避免结果冲突/重复
二、int32位的最大值为2147483647,所以对于int32位来说1000000007足够大。int64位的最大值为2^63-1,用最大值模1000000007的结果求平方,不会在int64中溢出。
所以在大数相乘问题中,因为(a∗b)%c=((a%c)∗(b%c))%c,所以相乘时两边都对1000000007取模,再保存在int64里面不会溢出。
这道题为什么要取模,取模前后的值不就变了吗?
确实:取模前 f(43) = 701408733, f(44) = 1134903170, f(45) = 1836311903, 但是 f(46) > 2147483647结果就溢出了。
取模后 f(43) = 701408733, f(44) = 134903163 , f(45) = 836311896, f(46) = 971215059没有溢出。取模之后能够计算更多的情况,如 f(46)。这道题的测试答案与取模后的结果一致。

总结一下,这道题要模1000000007的根本原因是标准答案取模了1000000007。不过大数情况下为了防止溢出,模1000000007是通用做法,原因见第一点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/223054.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++ :静态成员

静态成员 静态成员就是在成员变量和成员函数前加上关键字 static &#xff0c;称为静态成员 静态成员分为&#xff1a; 静态成员变量 1.所有对象共享同一份数据 2.在编译阶段分配内存 3.类内声明&#xff0c;类外初始化 静态成员函数 1.所有对象共享同一个函数 2.静态成…

CSGO搬砖还能做吗?CSGO饰品未来走势如何?

steam/csgo搬砖项目真能月入过万吗&#xff1f;到底真的假的&#xff1f; 如何看待CSGO饰品市场的整体走向&#xff1f; 从整体来说&#xff0c;CSGO的饰品市场与规模肯定会持续不断的上升&#xff0c;大盘不会发生特别大的波动&#xff0c;目前处于稳定期&#xff01;&…

安装最新版WebStorm来开发JavaScript应用程序

安装最新版WebStorm来开发JavaScript应用程序 Install the Latest Version of JetBrains WebStorm to Develop JavaScript Applications By JacksonML 2023-11-25 1. 系统要求 WebStorm是个跨平台集成开发环境&#xff08;IDE&#xff09;。按照JetBrains官网对WebStorm软件…

C++——模板(进阶)

目录&#xff1a; 非类型模板参数 模板参数分类&#xff1a;类型形参与非类型形参。 类型形参即&#xff1a;出现在模板参数列表中&#xff0c;跟在class或者typename之类的参数类型名称。 非类型形参&#xff0c;就是用一个常量作为类(函数)模板的一个参数&#xff0c;在类(函…

单片机学习10——独立按键

独立按键输入检测&#xff1a; #include<reg52.h>sbit LED1P1^0; sbit KEY1P3^4;void main() {KEY11;while(1){if(KEY10) //KEY1按下{LED10; //LED1被点亮}else{LED11;}} } 按键 #include<reg52.h>#define uchar unsigned char #define uint unsigned intsbit …

【Python技巧】快速安装各种常用库pip、whl、tar.gz最新最全安装方法(超时、快速安装))

【Python技巧】安装各种常用库pip、whl、tar.gz最新最全安装方法 &#x1f60e; 作者介绍&#xff1a;我是程序员洲洲&#xff0c;一个热爱写作的非著名程序员。CSDN全栈优质领域创作者、华为云博客社区云享专家、阿里云博客社区专家博主、前后端开发、人工智能研究生。公粽号&…

中科亿海微除法器(DIVIDE)

技术背景 技术概述 FPGA实现除法运算是一个比较复杂的过程&#xff0c;因为硬件逻辑与软件程序的区别。如果其中一个操作数为常数&#xff0c;可以通过简单的移位与求和操作代替&#xff0c;但用硬件逻辑完成两变量间除法运算会占用较多的资源&#xff0c;电路结构复杂&#xf…

了解静态测试?

静态测试是一种软件测试方法&#xff0c;它主要通过分析软件或代码的静态属性来检查潜在的问题和缺陷&#xff0c;而无需实际执行程序。这种测试方法侧重于检查源代码和其他软件文档&#xff0c;以发现错误并提高软件质量。 为什么要做静态测试&#xff1f; 提前发现和修复错…

简易版王者荣耀

所有包和类 GameFrame类 package newKingOfHonor;import java.awt.*; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.event.KeyAdapter; import java.awt.event.KeyEvent; import java.io.File; import java.util.ArrayList;im…

C语言你爱我么?(ZZULIOJ 1205:你爱我么?)

题目描述 LCY买个n束花准备送给她暗恋的女生&#xff0c;但是他不知道这个女生是否喜欢他。这时候一个算命先生告诉他让他查花瓣数&#xff0c;第一个花瓣表示"爱"&#xff0c;第二个花瓣表示"不爱"&#xff0c;第三个花瓣表示"爱"..... 为了使最…

为啥网络安全那么缺人,但很多人却找不到工作?

文章目录 一、学校的偏向于学术二、学的东西太基础三、不上班行不行 为什么网络安全的人才缺口那么大&#xff0c;但是大学毕业能找到网安工作的人却很少&#xff0c;就连招聘都没有其他岗位多&#xff1f; 明明央视都说了网络安全的人才缺口还有300多万&#xff0c;现在找不到…

鸿蒙应用开发-初见:ArkTS

作者&#xff1a;HarderCoder ArkTS ArkTS围绕应用开发在 TypeScript &#xff08;简称TS&#xff09;生态基础上做了进一步扩展&#xff0c;继承了TS的所有特性&#xff0c;是TS的超集 ArkTS在TS的基础上扩展了struct和很多的装饰器以达到描述UI和状态管理的目的 基本语法 …