目录
- 前言
- 一、步骤
- 二、PnP估计Head Pose,并显示
- 1.引入库
- 2.结果展示
- 总结
前言
YOLO8的集成度比较高,如何在简洁的代码中加入Head Pose的东西,不是一件简单的事情.这里介绍如何插入PnP算法实现头部姿态估计的代码?
一、步骤
修改predict中的模型,改为我们自己训练的YOLOLandmark模型.
修改cfg入口,由于我们修改来config中不少超参数,因此我们干脆修改来为finetune.yaml,替换默认的cfg即可.
funetune.yaml主要修改的点如下:
model: path to model
name: results saved directory.
conf: object confidence threshold
source: source video path
show: True # to show the live demo.
注意这些点需要根据工程去调整.
二、PnP估计Head Pose,并显示
1.引入库
参考github VHead的项目,我们将head pose进行模块化,传入图片和keypoints即可通过PnP算法估计出Head Pose
代码如下(示例):
def draw_headpose(im0, kpts):landmarks = kpts.view(-1).tolist()POINTS_NUM_LANDMARK = 68clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) # CLAHE Object (for Adaptive histogram equalization)boxPoints3D = np.array(([500., 500., 500.],[-500., 500., 500.],[-500., -500., 500.],[500., -500., 500.],[500., 500., -500.],[-500., 500., -500.],[-500., -500., -500.],[500., -500., -500.]))boxPoints2D = np.zeros((1,1,8,2))# parameters for mean filterwindowlen_1 = 5queue3D_points = np.zeros((windowlen_1,POINTS_NUM_LANDMARK,2))windowlen_2 =5queue1D = np.zeros(windowlen_2)# pamameters for kalman filterXX = 0PP = 0.01lms_x = landmarks[0::3]lms_y = landmarks[1::3]lms = [lms_x, lms_y] # [[x,y] for x,y in zip(lms_x, lms_y)]lms = [ ([x,y]) for x,y in zip(lms_x, lms_y)]test_data = [0]test_time = [0]# # Socket Connect# try:# client = socket(AF_INET, SOCK_STREAM) # 创建Socket的客户端# # client.connect(('127.0.0.1',1755))# client.connect(('10.8.220.128',1755))# except:# print("\nERROR: No socket connection.\n")# sys.exit(0)# initialize kalman objectKalmanX = KalmanObject(POINTS_NUM_LANDMARK, 1,10) # Tune Q, R to change landmarks_x sensitivityKalmanY = KalmanObject(POINTS_NUM_LANDMARK, 1,10) # Tune Q, R to change landmarks_y sensitivityuu_ = np.zeros((POINTS_NUM_LANDMARK))# initialize PARAMETERStemp_landmarks = np.zeros((POINTS_NUM_LANDMARK,2))# Apply kalman filter to landmarks FOR POSE ESTIMATIONKalmanX.kalman_update(uu_, lms_x) KalmanY.kalman_update(uu_, lms_y) temp_landmarks[:,0] = KalmanX.xx.astype(np.int32)temp_landmarks[:,1] = KalmanY.xx.astype(np.int32)temp_landmarks = mean_filter_for_landmarks(temp_landmarks) # Apply smooth filter to landmarks FOR POSE ESTIMATIONleftEyeWid, rightEyewid, mouthWid,mouthLen = get_feature_parameters(lms) #landmarks_orig)parameters_str = 'leftEyeWid:{}, rightEyewid:{}, mouthWid:{}, mouthLen:{}'.format(leftEyeWid, rightEyewid, mouthWid, mouthLen)print(parameters_str)# Five feature points for pose estimation# image_points = np.vstack((landmarks[30],landmarks[8],landmarks[36],landmarks[45],landmarks[48],landmarks[54]))image_points = np.vstack((temp_landmarks[30],temp_landmarks[8],temp_landmarks[36],temp_landmarks[45],temp_landmarks[1],temp_landmarks[15]))ret, rotation_vector, translation_vector, camera_matrix, dist_coeffs = get_pose_estimation(im0.shape, image_points)if ret != True:print('ERROR: get_pose_estimation failed')# continue# used_time = time.time() - start_time# print("used_time:{} sec".format(round(used_time, 3)))# Convert rotation_vector to quaternionw,x,y,z = get_quaternion(rotation_vector)quaternion_str = 'w:{}, x:{}, y:{}, z:{}'.format(w, x, y, z)print(quaternion_str)# Packing data and transmit to server through Socketdata = str(translation_vector[0,0])+':'+str(translation_vector[1,0])+':'+str(translation_vector[2,0])+':'+str(w)+':'+str(x)+':'+str(y)+':'+str(z)+':'+str(leftEyeWid)+':'+str(rightEyewid)+':'+str(mouthWid)+':'+str(mouthLen)# Project a 3D point set onto the image plane# We use this to draw a bounding box(nose_end_point2D, jacobian) = cv2.projectPoints(np.array([(0.0, 0.0, 1000)]), rotation_vector, translation_vector, camera_matrix, dist_coeffs)# global boxPoints2D for i in range(8):(boxPoints2D[:,:,i,:], jacobian) = cv2.projectPoints(np.array([boxPoints3D[i]]), rotation_vector, translation_vector, camera_matrix, dist_coeffs) boxPoints2D = boxPoints2D.astype(int)for p in image_points:cv2.circle(im0, (int(p[0]), int(p[1])), 3, (0,0,255), -1)boxset_1 = boxPoints2D[0,0,0:4,:]boxset_2 = boxPoints2D[0,0,4:8,:]boxset_3 = np.vstack((boxPoints2D[0,0,0,:],boxPoints2D[0,0,4,:]))boxset_4 = np.vstack((boxPoints2D[0,0,1,:],boxPoints2D[0,0,5,:]))boxset_5 = np.vstack((boxPoints2D[0,0,2,:],boxPoints2D[0,0,6,:]))boxset_6 = np.vstack((boxPoints2D[0,0,3,:],boxPoints2D[0,0,7,:]))cv2.polylines(im0, [boxset_1], True, (255,0,0), 3)cv2.polylines(im0, [boxset_2], True, (255,0,0), 3)cv2.polylines(im0, [boxset_3], True, (255,0,0), 3)cv2.polylines(im0, [boxset_4], True, (255,0,0), 3)cv2.polylines(im0, [boxset_5], True, (255,0,0), 3)cv2.polylines(im0, [boxset_6], True, (255,0,0), 3)p1 = ( int(image_points[0][0]), int(image_points[0][1]))p2 = ( int(nose_end_point2D[0][0][0]), int(nose_end_point2D[0][0][1]))cv2.line(im0, p1, p2, (0,255,0), 2)##########################################################################
这里需要判断ktps是否为空,再进行画图操作.
2.结果展示
可以看到左上角,head box的角度基本上与真实的头部姿态相吻合.
总结
这里,我们使用了Kalman 滤波来消除跳跃的情况,让pose变得更加平滑.但是Kalman 滤波的学习暂时没有具体取探索.在评估学习中.