微调预训练的 NLP 模型

动动发财的小手,点个赞吧!

针对任何领域微调预训练 NLP 模型的分步指南

简介

在当今世界,预训练 NLP 模型的可用性极大地简化了使用深度学习技术对文本数据的解释。然而,虽然这些模型在一般任务中表现出色,但它们往往缺乏对特定领域的适应性。本综合指南[1]旨在引导您完成微调预训练 NLP 模型的过程,以提高特定领域的性能。

动机

尽管 BERT 和通用句子编码器 (USE) 等预训练 NLP 模型可以有效捕获语言的复杂性,但由于训练数据集的范围不同,它们在特定领域应用中的性能可能会受到限制。当分析特定领域内的关系时,这种限制变得明显。

例如,在处理就业数据时,我们希望模型能够识别“数据科学家”和“机器学习工程师”角色之间的更接近,或者“Python”和“TensorFlow”之间更强的关联。不幸的是,通用模型常常忽略这些微妙的关系。

下表展示了从基本多语言 USE 模型获得的相似性的差异:

alt

为了解决这个问题,我们可以使用高质量的、特定领域的数据集来微调预训练的模型。这一适应过程显着增强了模型的性能和精度,充分释放了 NLP 模型的潜力。

在处理大型预训练 NLP 模型时,建议首先部署基本模型,并仅在其性能无法满足当前特定问题时才考虑进行微调。

本教程重点介绍使用易于访问的开源数据微调通用句子编码器 (USE) 模型。

可以通过监督学习和强化学习等各种策略来微调 ML 模型。在本教程中,我们将专注于一次(几次)学习方法与用于微调过程的暹罗架构相结合。

理论框架

可以通过监督学习和强化学习等各种策略来微调 ML 模型。在本教程中,我们将专注于一次(几次)学习方法与用于微调过程的暹罗架构相结合。

方法

在本教程中,我们使用暹罗神经网络,它是一种特定类型的人工神经网络。该网络利用共享权重,同时处理两个不同的输入向量来计算可比较的输出向量。受一次性学习的启发,这种方法已被证明在捕获语义相似性方面特别有效,尽管它可能需要更长的训练时间并且缺乏概率输出。

连体神经网络创建了一个“嵌入空间”,其中相关概念紧密定位,使模型能够更好地辨别语义关系。

alt
  • 双分支和共享权重:该架构由两个相同的分支组成,每个分支都包含一个具有共享权重的嵌入层。这些双分支同时处理两个输入,无论是相似的还是不相似的。
  • 相似性和转换:使用预先训练的 NLP 模型将输入转换为向量嵌入。然后该架构计算向量之间的相似度。相似度得分(范围在 -1 到 1 之间)量化两个向量之间的角距离,作为它们语义相似度的度量。
  • 对比损失和学习:模型的学习以“对比损失”为指导,即预期输出(训练数据的相似度得分)与计算出的相似度之间的差异。这种损失指导模型权重的调整,以最大限度地减少损失并提高学习嵌入的质量。

数据概览

为了使用此方法对预训练的 NLP 模型进行微调,训练数据应由文本字符串对组成,并附有它们之间的相似度分数。

训练数据遵循如下所示的格式:

alt

在本教程中,我们使用源自 ESCO 分类数据集的数据集,该数据集已转换为基于不同数据元素之间的关系生成相似性分数。

准备训练数据是微调过程中的关键步骤。假设您有权访问所需的数据以及将其转换为指定格式的方法。由于本文的重点是演示微调过程,因此我们将省略如何使用 ESCO 数据集生成数据的详细信息。

ESCO 数据集可供开发人员自由使用,作为各种应用程序的基础,这些应用程序提供自动完成、建议系统、职位搜索算法和职位匹配算法等服务。本教程中使用的数据集已被转换并作为示例提供,允许不受限制地用于任何目的。

让我们首先检查训练数据:

import pandas as pd

# Read the CSV file into a pandas DataFrame
data = pd.read_csv("./data/training_data.csv")

# Print head
data.head()
alt

起点:基线模型

首先,我们建立多语言通用句子编码器作为我们的基线模型。在进行微调过程之前,必须设置此基线。

在本教程中,我们将使用 STS 基准和相似性可视化示例作为指标来评估通过微调过程实现的更改和改进。

STS 基准数据集由英语句子对组成,每个句子对都与相似度得分相关联。在模型训练过程中,我们评估模型在此基准集上的性能。每次训练运行的持久分数是数据集中预测相似性分数和实际相似性分数之间的皮尔逊相关性。

这些分数确保当模型根据我们特定于上下文的训练数据进行微调时,它保持一定程度的通用性。

# Loads the Universal Sentence Encoder Multilingual module from TensorFlow Hub.
base_model_url = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3"
base_model = tf.keras.Sequential([
    hub.KerasLayer(base_model_url,
                   input_shape=[],
                   dtype=tf.string,
                   trainable=False)
])

# Defines a list of test sentences. These sentences represent various job titles.
test_text = ['Data Scientist''Data Analyst''Data Engineer',
             'Nurse Practitioner''Registered Nurse''Medical Assistant',
             'Social Media Manager''Marketing Strategist''Product Marketing Manager']

# Creates embeddings for the sentences in the test_text list. 
# The np.array() function is used to convert the result into a numpy array.
# The .tolist() function is used to convert the numpy array into a list, which might be easier to work with.
vectors = np.array(base_model.predict(test_text)).tolist()

# Calls the plot_similarity function to create a similarity plot.
plot_similarity(test_text, vectors, 90"base model")

# Computes STS benchmark score for the base model
pearsonr = sts_benchmark(base_model)
print("STS Benachmark: " + str(pearsonr))
alt

微调模型

下一步涉及使用基线模型构建暹罗模型架构,并使用我们的特定领域数据对其进行微调。

# Load the pre-trained word embedding model
embedding_layer = hub.load(base_model_url)

# Create a Keras layer from the loaded embedding model
shared_embedding_layer = hub.KerasLayer(embedding_layer, trainable=True)

# Define the inputs to the model
left_input = keras.Input(shape=(), dtype=tf.string)
right_input = keras.Input(shape=(), dtype=tf.string)

# Pass the inputs through the shared embedding layer
embedding_left_output = shared_embedding_layer(left_input)
embedding_right_output = shared_embedding_layer(right_input)

# Compute the cosine similarity between the embedding vectors
cosine_similarity = tf.keras.layers.Dot(axes=-1, normalize=True)(
    [embedding_left_output, embedding_right_output]
)

# Convert the cosine similarity to angular distance
pi = tf.constant(math.pi, dtype=tf.float32)
clip_cosine_similarities = tf.clip_by_value(
    cosine_similarity, -0.999990.99999
)
acos_distance = 1.0 - (tf.acos(clip_cosine_similarities) / pi)

# Package the model
encoder = tf.keras.Model([left_input, right_input], acos_distance)

# Compile the model
encoder.compile(
    optimizer=tf.keras.optimizers.Adam(
        learning_rate=0.00001,
        beta_1=0.9,
        beta_2=0.9999,
        epsilon=0.0000001,
        amsgrad=False,
        clipnorm=1.0,
        name="Adam",
    ),
    loss=tf.keras.losses.MeanSquaredError(
        reduction=keras.losses.Reduction.AUTO, name="mean_squared_error"
    ),
    metrics=[
        tf.keras.metrics.MeanAbsoluteError(),
        tf.keras.metrics.MeanAbsolutePercentageError(),
    ],
)

# Print the model summary
encoder.summary()
alt
  • Fit model
# Define early stopping callback
early_stop = keras.callbacks.EarlyStopping(
    monitor="loss", patience=3, min_delta=0.001
)

# Define TensorBoard callback
logdir = os.path.join(".""logs/fit/" + datetime.now().strftime("%Y%m%d-%H%M%S"))
tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir)

# Model Input
left_inputs, right_inputs, similarity = process_model_input(data)

# Train the encoder model
history = encoder.fit(
    [left_inputs, right_inputs],
    similarity,
    batch_size=8,
    epochs=20,
    validation_split=0.2,
    callbacks=[early_stop, tensorboard_callback],
)

# Define model input
inputs = keras.Input(shape=[], dtype=tf.string)

# Pass the input through the embedding layer
embedding = hub.KerasLayer(embedding_layer)(inputs)

# Create the tuned model
tuned_model = keras.Model(inputs=inputs, outputs=embedding)

评估结果

现在我们有了微调后的模型,让我们重新评估它并将结果与基本模型的结果进行比较。

# Creates embeddings for the sentences in the test_text list. 
# The np.array() function is used to convert the result into a numpy array.
# The .tolist() function is used to convert the numpy array into a list, which might be easier to work with.
vectors = np.array(tuned_model.predict(test_text)).tolist()

# Calls the plot_similarity function to create a similarity plot.
plot_similarity(test_text, vectors, 90"tuned model")

# Computes STS benchmark score for the tuned model
pearsonr = sts_benchmark(tuned_model)
print("STS Benachmark: " + str(pearsonr))
alt

基于在相对较小的数据集上对模型进行微调,STS 基准分数与基线模型的分数相当,表明调整后的模型仍然具有普适性。然而,相似性可视化显示相似标题之间的相似性得分增强,而不同标题的相似性得分降低。

总结

微调预训练的 NLP 模型以进行领域适应是一种强大的技术,可以提高其在特定上下文中的性能和精度。通过利用高质量的、特定领域的数据集和暹罗神经网络,我们可以增强模型捕获语义相似性的能力。

本教程以通用句子编码器 (USE) 模型为例,提供了微调过程的分步指南。我们探索了理论框架、数据准备、基线模型评估和实际微调过程。结果证明了微调在增强域内相似性得分方面的有效性。

通过遵循此方法并将其适应您的特定领域,您可以释放预训练 NLP 模型的全部潜力,并在自然语言处理任务中取得更好的结果

Reference

[1]

Source: https://towardsdatascience.com/domain-adaption-fine-tune-pre-trained-nlp-models-a06659ca6668

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/22590.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenCv (C++) 使用矩形 Rect 覆盖图像中某个区域

文章目录 1. 使用矩形将图像中某个区域置为黑色2. cv::Rect 类介绍 1. 使用矩形将图像中某个区域置为黑色 推荐参考博客:OpenCV实现将任意形状ROI区域置黑(多边形区域置黑) 比较常用的是使用 Rect 矩形实现该功能,代码如下&…

SciencePub学术 | 区块链类重点SCIEEI征稿中

SciencePub学术 刊源推荐: 区块链类重点SCIE&EI征稿中!信息如下,录满为止: 一、期刊概况: SCI-01 【期刊简介】IF:4.0-4.5,JCR2区,中科院3区; 【检索情况】SCIE&EI双检&…

性能测试工具 Jmeter 测试 JMS (Java Message Service)/ActiveMQ 性能

目录 前言 ActiveMQ 介绍 准备工作 编写jndi.properties添加到ApacheJMeter.jar 中 下载 ActiveMQ 配置 Jmeter 进行测试 点对点 (Queues 队列) 配置 Jmeter 进行测试 发布/订阅 (Topic 队列) 配置发布 Publisher 配置订阅 Subscriber 总结 前言 JMeter是一个功能强大…

机械设计制造及其自动化专业向PLC方向发展的可行性

是的,机械设计制造及其自动化专业往PLC(可编程逻辑控制器)方向发展是可行的。PLC是一种用于控制和自动化各种机械设备和工业过程的计算机控制系统。它被广泛应用于工业自动化领域,包括制造业、能源行业、交通运输等。 我这里刚好…

ECMAScript 6 之二

目录 2.6 Symbol 2.7 Map 和 Set 2.8 迭代器和生成器 2.9 Promise对象 2.10 Proxy对象 2.11 async的用法 2.22 类class 2.23 模块化实现 2.6 Symbol 原始数据类型,它表示是独一无二的值。它属于 JavaScript 语言的原生数据类型之一,其他数据类型…

将媒体公司资产迁移到 Amazon S3 的技术方案

随着媒体公司的发展,他们在仓库中积累了大量的旧磁带和未数字化的视频。这些资产可能很有价值,但以目前的形式很难访问和货币化。此外,将这些资产存储在仓库中既有风险又昂贵。 媒体企业可以通过将其资产迁移到云存储来解决这些问题&#xf…

i.MX6ULL(十五) 根文件系统

Linux“三巨头”已经完成了 2 个了,就剩最后一个 rootfs( 根文件系统 ) 了,本章我们就来学 习一下根文件系统的组成以及如何构建根文件系统。这是 Linux 移植的最后一步,根文件系统 构建好以后就意味着我们已经拥有了一个完整的、可以运…

Android13 编译错误汇总

1. error: New setting keys are not allowed 一版是在Settings中添加了新的字段导致的 解决: 在你的字段上面加上SuppressLint("NoSettingsProvider") 继续编译应该会出现 按照提示 make api-stubs-docs-non-updatable-update-current-api 然后再…

Java反射与“整活--(IOC容器)”

文章目录 前言反射什么是反射基本操作获取类对象获取类属性获取类方法方法的执行对构造方法的操作 注解定义获取注解 整活(IOC容器)项目结构IOC/DI流程ApplicationContextBeanDefinitionReaderBeanDefinitionBeanWrappergetBean()…

【C++顺序容器】forward_list的成员函数和非成员函数

目录 forward_list 1. forward_list的成员函数 1.1 构造、析构和赋值运算符重载 1.1.1 构造函数 1.1.2 析构函数 1.1.3 赋值运算符重载 1.2 迭代器 1.3 容量 1.4 元素访问 1.4.1 遍历方法 1.5 修改器 1.6 操作 1.7 观察者 2. forward_list的非成员函数 forward_l…

3.SpringBoot 返回Html界面

1.添加依赖spring-boot-starter-web <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency>2.创建Html界面 在Resources/static 文件夹下面建立对应的html&#xff0c…

实验:如何在YOLO8中添加PnP算法来实现Head Pose Estimation

目录 前言一、步骤二、PnP估计Head Pose&#xff0c;并显示1.引入库2.结果展示 总结 前言 YOLO&#xff18;的集成度比较高&#xff0c;如何在简洁的代码中加入Head Pose的东西&#xff0c;不是一件简单的事情&#xff0e;这里介绍如何插入PnP算法实现头部姿态估计的代码&…