人工智能与供应链行业融合:预测算法的通用化与实战化

前言

在这里插入图片描述
「作者主页」:雪碧有白泡泡
「个人网站」:雪碧的个人网站
请添加图片描述

让我们一起深入探索人工智能与供应链的融合,以及预测算法在实际应用中的价值!🔍🚀

请添加图片描述

文章目录

  • 前言
  • 供应链预测算法的基本流程
  • 统计学习模型与机器学习在供应链预测中的角色
    • 统计学习模型的角色:
    • 机器学习的角色:
  • 深度学习模型在智能供应链中的应用
  • 算法融合与应用场景实现
  • 好书推荐

在这里插入图片描述

供应链预测算法的基本流程

  1. 数据收集与准备: 首先,需要收集与预测相关的数据,例如历史销售数据、供应链信息等。确保数据的准确性和完整性,并进行必要的数据清洗和处理,例如去除异常值、填补缺失值等。

  2. 特征选择与提取: 在进行预测之前,需要选择适当的特征(即影响预测结果的因素)并提取它们。这可能涉及统计指标的计算、时间序列分析、数据降维等技术手段。

  3. 模型选择与训练: 选择适合问题特点的预测模型,并使用历史数据进行模型的训练。常见的预测算法包括时间序列模型(如ARIMA、指数平滑法等)、统计学习模型(如线性回归、决策树等)、机器学习模型(如支持向量机、随机森林等)以及深度学习模型(如循环神经网络、卷积神经网络等)。

  4. 模型评估与优化: 使用一部分历史数据来评估模型的性能。常见的评估指标包括均方误差(MSE)、平均绝对误差(MAE)、均方根误差(RMSE)等。根据评估结果,进行模型的优化,例如调整模型参数、改进特征选择等。

  5. 预测与结果解释: 使用训练好的模型对未来的数据进行预测。根据预测结果,可以进行进一步的解释和分析,例如制定供应链策略、调整库存管理等。

  6. 监控与更新: 随着时间的推移,收集新的数据并根据需要对模型进行更新。监控模型的性能,并及时调整预测策略以适应新的情况。

这些步骤构成了预测算法的基本流程,但实际应用时可能会因具体情况而有所差异。对于不同的供应链预测问题,可能需要选择不同的模型和技术手段来进行预测和优化
在这里插入图片描述

统计学习模型与机器学习在供应链预测中的角色

当谈论统计学习模型和机器学习在供应链预测中的角色时,它们都是重要的工具和方法。以下是它们在供应链预测中的主要角色:

统计学习模型的角色:

  1. 线性回归模型: 线性回归是一种常见的统计学习模型,可以用于建立供应链中不同因素之间的线性关系,如需求量与时间的关系等。它可以帮助预测未来的需求量,并作为供应链规划的依据。

  2. 时间序列模型: 时间序列模型适用于具有时间依赖性的预测问题,如销售季节性波动、趋势等。常见的时间序列模型包括ARIMA、指数平滑法等。它们可以捕捉供应链中的时间模式,使得预测更准确。

机器学习的角色:

  1. 决策树模型: 决策树模型可用于供应链中的分类和回归问题。通过学习历史数据的模式和规律,决策树模型可以帮助预测不同供应链情况下的最佳决策路径,而不需要明确的规则。

  2. 支持向量机: 支持向量机是一种强大的机器学习算法,可用于分类和回归问题。在供应链预测中,它可以识别和分析不同变量之间的复杂关系,从而提供准确的预测结果。

  3. 随机森林: 随机森林是一种集成学习方法,通过组合多个决策树来进行预测。它能够处理大量和高维度的数据,在供应链预测中具有较好的准确性和鲁棒性。

统计学习模型和机器学习模型在供应链预测中的角色是相辅相成的。统计学习模型可以帮助识别和建模供应链中的基本特征和规律,而机器学习模型则能更好地处理大量和复杂的数据,发现隐藏的模式和关系。根据具体的预测问题和数据特点,可以选择合适的模型或结合多种模型进行预测,以提高供应链预测的准确性和效果。

在这里插入图片描述

深度学习模型在智能供应链中的应用

它们能够提供更高级的功能和性能。以下是深度学习模型在智能供应链中的一些主要应用:

  1. 预测需求量: 深度学习模型如循环神经网络(RNN)和长短期记忆网络(LSTM)可以处理序列数据,能够更准确地预测未来的需求量。这对供应链规划和库存管理非常重要,可以降低库存成本并确保供应的及时性。

  2. 供应链优化: 深度强化学习可以应用于供应链优化问题。通过与环境的交互,深度学习模型可以学习最佳决策策略,例如合理安排生产计划、运输路径优化、库存分配等,以最大程度地提高供应链运作效率并降低成本。

  3. 检测异常情况: 深度学习模型对于识别供应链中的异常情况和风险具有很好的能力。例如,通过训练模型来检测异常订单、异常设备状况、异常供应商行为等,可以及早采取措施来减少潜在损失。

  4. 运输和路径规划: 深度学习模型可以通过对大规模数据的学习,提供更精确和实时的运输和路径规划。它们能够考虑多种因素,如交通状况、天气等,以优化运输路线并提高送货准时率。

在这里插入图片描述

算法融合与应用场景实现

有许多不同的算法可以结合使用以解决供应链行业的具体问题。以下是一些常见的算法和相关的应用场景,以及代码片段作为示例:

  1. 路径规划算法:用于优化货物运输路径,减少运输时间和成本。常见的算法包括最短路径算法(如Dijkstra算法)和遗传算法。
# 使用Dijkstra算法进行最短路径计算
import heapqdef dijkstra(graph, start):distances = {node: float('inf') for node in graph}distances[start] = 0pq = [(0, start)]  # 优先队列visited = set()while pq:current_distance, current_node = heapq.heappop(pq)if current_distance > distances[current_node]:continuefor neighbor, weight in graph[current_node].items():distance = current_distance + weightif distance < distances[neighbor]:distances[neighbor] = distanceheapq.heappush(pq, (distance, neighbor))return distances# 示例使用
graph = {'A': {'B': 5, 'C': 2},'B': {'D': 4},'C': {'B': 1, 'D': 7},'D': {'A': 6},
}start_node = 'A'
distances = dijkstra(graph, start_node)
print(distances)
  1. 遗传算法:用于优化供应链网络设计和调度问题,包括仓库位置选择、配送路线规划等。
# 使用遗传算法进行仓库位置选择
import randomdef fitness_function(individual):# 计算个体适应度,例如成本、服务水平等指标return fitness_scoredef genetic_algorithm(population, fitness_func, generations):for _ in range(generations):# 选择selected_individuals = selection(population, fitness_func)# 交叉offspring = crossover(selected_individuals)# 变异mutated_offspring = mutation(offspring)# 替换population = replace(population, mutated_offspring)return best_individual(population)# 示例使用
population = generate_initial_population()best_solution = genetic_algorithm(population, fitness_function, generations=100)
print(best_solution)
  1. 聚类算法:用于供应链中的需求分析、库存分类和供应商分组。常见的算法包括K-means和层次聚类算法。
# 使用K-means进行库存分类
from sklearn.cluster import KMeansdef inventory_clustering(data, num_clusters):kmeans = KMeans(n_clusters=num_clusters)kmeans.fit(data)labels = kmeans.labels_return labels# 示例使用
inventory_data = load_inventory_data()
cluster_labels = inventory_clustering(inventory_data, num_clusters=3)
print(cluster_labels)

请添加图片描述

好书推荐

更详细全面的内容往往都以书籍的形式展现的,部分内容也都参考了以下书籍方向

本书主要介绍人工智能和供应链行业融合中通用化和实战化的预测算法,以及这些预测算法在业界实际应用的案例,旨在通过简单易懂的方式让读者了解供应链相关的应用场景。本书作者具有丰富的业界从业经验,在供应链预测算法方面拥有丰富的理论研究和项目经验,能够将基础模型、进阶模型和行业实践有机地融合,循序渐进地介绍供应链预测算法,使读者在学习过程中感到轻松、有趣,并能应用所学知识。本书涵盖了智能供应链预测领域的算法理论模型和行业实践知识。本书首先从商品需求预测案例开始介绍预测的基本流程,然后深入讨论基础预测模型原理和复杂预测模型的设计策略,最后通过多个不同行业的预测实践案例来说明算法的应用场景。预测算法包括传统的时间序列、统计学习模型和机器学习、深度学习模型,通过不同类型算法的有效融合,为不同的应用场景提供坚实的算法基础。

京东链接:https://item.jd.com/14192666.html

  • 🎁本次送书1~3本【取决于阅读量,阅读量越多,送的越多】👈
  • ⌛️活动时间:截止到2023-12月1号
  • ✳️参与方式:关注博主+三连(点赞、收藏、评论)
    请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/229475.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

冲刺高端,OPPO不太OK?

所有人都知道OPPO有一个高端梦&#xff0c;而折叠屏似乎就是其弯道超车实现高端化的关键所在。然而如今看来&#xff0c;折叠屏手机在市场的表现似乎并没有成为主流&#xff0c;这或许也意味着OPPO距离自己的高端梦似乎还有些距离。 更高端&#xff0c;往往意味着更多的利润和价…

广州华锐视点:基于VR元宇宙技术开展法律法规常识在线教学,打破地域和时间限制

随着科技的飞速发展&#xff0c;人类社会正逐渐迈向一个全新的时代——元宇宙。元宇宙是一个虚拟的、数字化的世界&#xff0c;它将现实世界与数字世界紧密相连&#xff0c;为人们提供了一个全新的交流、学习和娱乐平台。在这个充满无限可能的元宇宙中&#xff0c;法律知识同样…

【小黑嵌入式系统第十课】μC/OS-III概况——实时操作系统的特点、基本概念(内核任务中断)、与硬件的关系实现

文章目录 一、为什么要学习μC/OS-III二、嵌入式操作系统的发展历史三、实时操作系统的特点四、基本概念1. 前后台系统2. 操作系统3. 实时操作系统&#xff08;RTOS&#xff09;4. 内核5. 任务6. 任务优先级7. 任务切换8. 调度9. 非抢占式&#xff08;合作式&#xff09;内核10…

从 0 到 1 开发一个 node 命令行工具

G2 5.0 推出了服务端渲染的能力&#xff0c;为了让开发者更快捷得使用这部分能力&#xff0c;最写了一个 node 命令行工具 g2-ssr-node&#xff1a;用于把 G2 的 spec 转换成 png、jpeg 或者 pdf 等。基本的使用如下&#xff1a; $ g2-ssr-node g2png -i ./bar.json -o ./bar.…

水库大坝安全在线监测系统守护水利工程的坚实屏障

随着科技的发展&#xff0c;水库大坝的安全监测已经进入了一个全新的时代。过去&#xff0c;我们无法实时监测大坝的安全状况&#xff0c;只能在灾难发生后进行补救&#xff0c;现在&#xff0c;通过WX-DB1水库大坝安全在线监测系统&#xff0c;我们能够在第一时间掌握大坝的运…

随笔(持续更新)

随笔&#xff08;持续更新&#xff09; 1、某个网络有没有连通 要获取某个网站的ip地址&#xff0c;可以通过ping它的域名就可以得到IP地址 例如&#xff1a;我想获取百度的ip地址&#xff08;Windows环境&#xff09; C:\Users\tq>ping www.baidu.com正在 Ping www.a.s…

代码随想录算法训练营第四十九天【动态规划part10】 | 121. 买卖股票的最佳时机、122.买卖股票的最佳时机II

121. 买卖股票的最佳时机 题目链接&#xff1a; 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 求解思路&#xff1a; 动规五部曲 确定dp数组及其下标含义&#xff1a;使用一个二维数组dp[i][2]&#xff0c;dp[i][0]代表持有股票的最大收益&…

ZYNQ_project:IIC_EEPROM

EEPROM简介&#xff1a; EEPROM(Electrically Erasable Progammable Read Only Memory&#xff0c; E2PROM)是指带电可擦可编程只读存储器&#xff0c;是一种常用的非易失性存储器&#xff08;掉电数据不丢失&#xff09;&#xff0c; E2PROM 有多种类型的产品&#xff0c;我们…

深入理解强化学习——马尔可夫决策过程:备份图(Backup Diagram)

分类目录&#xff1a;《深入理解强化学习》总目录 在本文中&#xff0c;我们将介绍备份&#xff08;Backup&#xff09;的概念。备份类似于自举之间的迭代关系&#xff0c;对于某一个状态&#xff0c;它的当前价值是与它的未来价值线性相关的。 我们将与下图类似的图称为备份图…

allure修改logo 自定义

无论pytest还是httprunner都适用allure生成报告。那我们就有必要对allure报告进行一些定制。我们先修改logo&#xff1a; 1、给allure.yml插件custom-logo-plugin 找到allure安装的位置&#xff0c;在config文件夹下有一个allure.yml的配置文件。打开它&#xff0c;在最后添加…

Python NeuralProphet库: 高效时间序列预测的利器

更多Python学习内容&#xff1a;ipengtao.com 时间序列数据在许多领域中都扮演着关键的角色&#xff0c;从股票价格到气象数据。为了更准确地预测未来趋势&#xff0c;机器学习领域涌现出许多时间序列预测的方法和工具。其中&#xff0c;NeuralProphet库是一个强大的工具&#…

可信区块链运行监测服务平台(TBM)发展研讨会在北京召开

2023年11月23日&#xff0c;由中国信息通信研究院、中国移动通信集团设计院有限公司、区块链服务网络&#xff08;BSN&#xff09;发展联盟共同主办的“可信区块链运行监测服务平台&#xff08;TBM&#xff09;发展研讨会”在北京成功举行。会议围绕区块链的监测与治理&#xf…