Java核心知识点整理大全22-笔记

目录

19.1.14. CAP

一致性(C):

可用性(A):

分区容忍性(P):

20. 一致性算法

20.1.1. Paxos

Paxos 三种角色:Proposer,Acceptor,Learners

Proposer:

Acceptor:

Learner:

Paxos 算法分为两个阶段。具体如下:

阶段一(准 leader 确定 ):

阶段二(leader 确认):

20.1.2. Zab

20.1.3. Raft

20.1.3.1. 角色

Leader(领导者-日志管理)

Follower(追随者-日志同步)

Candidate(候选者-负责选票)

20.1.3.2. Term(任期

20.1.3.3. 选举(Election)

20.1.3.4. 安全性(Safety)

20.1.3.5. raft 协议和 zab 协议区别

相同点

不同点

20.1.4. NWR

20.1.5. Gossip

20.1.6. 一致性 Hash

20.1.6.1. 一致性 Hash 特性

20.1.6.2. 一致性 Hash 原理

1.建构环形 hash 空间:

2.把需要缓存的内容(对象)映射到 hash 空间

3.把服务器(节点)映射到 hash 空间

4.把对象映射到服务节点

考察 cache 的变动

虚拟节点

Java核心知识点整理大全-笔记_希斯奎的博客-CSDN博客

往期快速传送门👆:


19.1.14. CAP

CAP 原则又称 CAP 定理,指的是在一个分布式系统中, Consistency(一致性)、 Availability (可用性)、Partition tolerance(分区容错性),三者不可得兼。

一致性(C):

1. 在分布式系统中的所有数据备份,在同一时刻是否同样的值。(等同于所有节点访问同一份 最新的数据副本)

可用性(A):

 2. 在集群中一部分节点故障后,集群整体是否还能响应客户端的读写请求。(对数据更新具备 高可用性)

分区容忍性(P):

3. 以实际效果而言,分区相当于对通信的时限要求。系统如果不能在时限内达成数据一致性, 就意味着发生了分区的情况,必须就当前操作在 C 和 A 之间做出选择。

20. 一致性算法

20.1.1. Paxos

Paxos 算法解决的问题是一个分布式系统如何就某个值(决议)达成一致。一个典型的场景是, 在一个分布式数据库系统中,如果各节点的初始状态一致,每个节点执行相同的操作序列,那么 他们最后能得到一个一致的状态。为保证每个节点执行相同的命令序列,需要在每一条指令上执 行一个“一致性算法”以保证每个节点看到的指令一致。zookeeper 使用的 zab 算法是该算法的 一个实现。 在 Paxos 算法中,有三种角色:Proposer,Acceptor,Learners

Paxos 三种角色:Proposer,Acceptor,Learners

Proposer:

只要 Proposer 发的提案被半数以上 Acceptor 接受,Proposer 就认为该提案里的 value 被选定 了。

Acceptor:

只要 Acceptor 接受了某个提案,Acceptor 就认为该提案里的 value 被选定了。

Learner:

Acceptor 告诉 Learner 哪个 value 被选定,Learner 就认为那个 value 被选定。

Paxos 算法分为两个阶段。具体如下:

阶段一(准 leader 确定 ):

(a) Proposer 选择一个提案编号 N,然后向半数以上的 Acceptor 发送编号为 N 的 Prepare 请求。

(b) 如果一个 Acceptor 收到一个编号为 N 的 Prepare 请求,且 N 大于该 Acceptor 已经响应过的 所有 Prepare 请求的编号,那么它就会将它已经接受过的编号最大的提案(如果有的话)作为响 应反馈给 Proposer,同时该 Acceptor 承诺不再接受任何编号小于 N 的提案。

阶段二(leader 确认)

(a) 如果 Proposer 收到半数以上 Acceptor 对其发出的编号为 N 的 Prepare 请求的响应,那么它 就会发送一个针对[N,V]提案的 Accept 请求给半数以上的 Acceptor。注意:V 就是收到的响应中 编号最大的提案的 value,如果响应中不包含任何提案,那么 V 就由 Proposer 自己决定。

(b) 如果 Acceptor 收到一个针对编号为 N 的提案的 Accept 请求,只要该 Acceptor 没有对编号 大于 N 的 Prepare 请求做出过响应,它就接受该提案。

20.1.2. Zab

ZAB( ZooKeeper Atomic Broadcast , ZooKeeper 原子消息广播协议)协议包括两种基本的模 式:崩溃恢复和消息广播

1. 当整个服务框架在启动过程中,或是当 Leader 服务器出现网络中断崩溃退出与重启等异常情 况时,ZAB 就会进入恢复模式并选举产生新的 Leader 服务器。

2. 当选举产生了新的 Leader 服务器,同时集群中已经有过半的机器与该 Leader 服务器完成了 状态同步之后,ZAB 协议就会退出崩溃恢复模式,进入消息广播模式。

3. 当有新的服务器加入到集群中去,如果此时集群中已经存在一个 Leader 服务器在负责进行消 息广播,那么新加入的服务器会自动进入数据恢复模式,找到 Leader 服务器,并与其进行数 据同步,然后一起参与到消息广播流程中去。

以上其实大致经历了三个步骤:

1.崩溃恢复:主要就是 Leader 选举过程

2.数据同步:Leader 服务器与其他服务器进行数据同步

3.消息广播:Leader 服务器将数据发送给其他服务器

说明:zookeeper 章节对该协议有详细描述。

20.1.3. Raft

与 Paxos 不同 Raft 强调的是易懂(Understandability),Raft 和 Paxos 一样只要保证 n/2+1 节 点正常就能够提供服务;raft 把算法流程分为三个子问题:选举(Leader election)、日志复制 (Log replication)、安全性(Safety)三个子问题。

20.1.3.1. 角色

Raft 把集群中的节点分为三种状态:Leader、 Follower 、Candidate,理所当然每种状态负 责的任务也是不一样的,Raft 运行时提供服务的时候只存在 Leader 与 Follower 两种状态;

Leader(领导者-日志管理)

负责日志的同步管理,处理来自客户端的请求,与 Follower 保持这 heartBeat 的联系;

Follower(追随者-日志同步)

刚启动时所有节点为Follower状态,响应Leader的日志同步请求,响应Candidate的请求, 把请求到 Follower 的事务转发给 Leader;

Candidate(候选者-负责选票)

负责选举投票,Raft 刚启动时由一个节点从 Follower 转为 Candidate 发起选举,选举出 Leader 后从 Candidate 转为 Leader 状态;

20.1.3.2. Term(任期

) 在 Raft 中使用了一个可以理解为周期(第几届、任期)的概念,用 Term 作为一个周期,每 个 Term 都是一个连续递增的编号,每一轮选举都是一个 Term 周期,在一个 Term 中只能产生一 个 Leader;当某节点收到的请求中 Term 比当前 Term 小时则拒绝该请求。

20.1.3.3. 选举(Election)

选举定时器

Raft 的选举由定时器来触发,每个节点的选举定时器时间都是不一样的,开始时状态都为 Follower 某个节点定时器触发选举后 Term 递增,状态由 Follower 转为 Candidate,向其他节点 发起 RequestVote RPC 请求,这时候有三种可能的情况发生:

1:该 RequestVote 请求接收到 n/2+1(过半数)个节点的投票,从 Candidate 转为 Leader, 向其他节点发送 heartBeat 以保持 Leader 的正常运转。

2:在此期间如果收到其他节点发送过来的 AppendEntries RPC 请求,如该节点的 Term 大 则当前节点转为 Follower,否则保持 Candidate 拒绝该请求。

3:Election timeout 发生则 Term 递增,重新发起选举

在一个 Term 期间每个节点只能投票一次,所以当有多个 Candidate 存在时就会出现每个 Candidate 发起的选举都存在接收到的投票数都不过半的问题,这时每个 Candidate 都将 Term 递增、重启定时器并重新发起选举,由于每个节点中定时器的时间都是随机的,所以就不会多次 存在有多个 Candidate 同时发起投票的问题。

在 Raft 中当接收到客户端的日志(事务请求)后先把该日志追加到本地的 Log 中,然后通过 heartbeat 把该 Entry 同步给其他 Follower,Follower 接收到日志后记录日志然后向 Leader 发送 ACK,当 Leader 收到大多数(n/2+1)Follower 的 ACK 信息后将该日志设置为已提交并追加到 本地磁盘中,通知客户端并在下个 heartbeat 中 Leader 将通知所有的 Follower 将该日志存储在 自己的本地磁盘中。

20.1.3.4. 安全性(Safety)

安全性是用于保证每个节点都执行相同序列的安全机制如当某个 Follower 在当前 Leader commit Log 时变得不可用了,稍后可能该 Follower 又会倍选举为 Leader,这时新 Leader 可能会用新的 Log 覆盖先前已 committed 的 Log,这就是导致节点执行不同序列;Safety 就是用于保证选举出 来的 Leader 一定包含先前 commited Log 的机制;

选举安全性(Election Safety):每个 Term 只能选举出一个 Leader Leader

完整性(Leader Completeness):这里所说的完整性是指 Leader 日志的完整性, Raft 在选举阶段就使用 Term 的判断用于保证完整性:当请求投票的该 Candidate 的 Term 较大 或 Term 相同 Index 更大则投票,该节点将容易变成 leader。

20.1.3.5. raft 协议和 zab 协议区别

相同点

 采用 quorum 来确定整个系统的一致性,这个 quorum 一般实现是集群中半数以上的服务器,

 zookeeper 里还提供了带权重的 quorum 实现.

 都由 leader 来发起写操作.

 都采用心跳检测存活性

 leader election 都采用先到先得的投票方式

不同点

 zab 用的是 epoch 和 count 的组合来唯一表示一个值, 而 raft 用的是 term 和 index

 zab 的 follower 在投票给一个 leader 之前必须和 leader 的日志达成一致,而 raft 的 follower 则简单地说是谁的 term 高就投票给谁

 raft 协议的心跳是从 leader 到 follower, 而 zab 协议则相反

 raft 协议数据只有单向地从 leader 到 follower(成为 leader 的条件之一就是拥有最新的 log), 而 zab 协议在 discovery 阶段, 一个 prospective leader 需要将自己的 log 更新为 quorum 里面 最新的 log,然后才好在 synchronization 阶段将 quorum 里的其他机器的 log 都同步到一致

20.1.4. NWR

N:在分布式存储系统中,有多少份备份数据

W:代表一次成功的更新操作要求至少有 w 份数据写入成功

R: 代表一次成功的读数据操作要求至少有 R 份数据成功读取

NWR值的不同组合会产生不同的一致性效果,当W+R>N 的时候,整个系统对于客户端来讲能保 证强一致性。而如果 R+W<=N,则无法保证数据的强一致性。以常见的 N=3、W=2、R=2 为例: N=3,表示,任何一个对象都必须有三个副本(Replica),W=2 表示,对数据的修改操作 (Write)只需要在 3 个 Replica 中的 2 个上面完成就返回,R=2 表示,从三个对象中要读取到 2 个数据对象,才能返回

20.1.5. Gossip

Gossip 算法又被称为反熵(Anti-Entropy),熵是物理学上的一个概念,代表杂乱无章,而反熵 就是在杂乱无章中寻求一致,这充分说明了 Gossip 的特点:在一个有界网络中,每个节点都随机地与其他节点通信,经过一番杂乱无章的通信,最终所有节点的状态都会达成一致。每个节点可 能知道所有其他节点,也可能仅知道几个邻居节点,只要这些节可以通过网络连通,最终他们的 状态都是一致的,当然这也是疫情传播的特点。

20.1.6. 一致性 Hash

一致性哈希算法(Consistent Hashing Algorithm)是一种分布式算法,常用于负载均衡。 Memcached client 也选择这种算法,解决将 key-value 均匀分配到众多 Memcached server 上 的问题。它可以取代传统的取模操作,解决了取模操作无法应对增删 Memcached Server 的问题 (增删 server 会导致同一个 key,在 get 操作时分配不到数据真正存储的 server,命中率会急剧下 降)。

20.1.6.1. 一致性 Hash 特性

 平衡性(Balance):平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得 所有的缓冲空间都得到利用。

 单调性(Monotonicity):单调性是指如果已经有一些内容通过哈希分派到了相应的缓冲中, 又有新的缓冲加入到系统中。哈希的结果应能够保证原有已分配的内容可以被映射到新的缓 冲中去,而不会被映射到旧的缓冲集合中的其他缓冲区。容易看到,上面的简单求余算法 hash(object)%N 难以满足单调性要求。

 平滑性(Smoothness):平滑性是指缓存服务器的数目平滑改变和缓存对象的平滑改变是一致 的。

20.1.6.2. 一致性 Hash 原理

1.建构环形 hash 空间:

1. 考虑通常的 hash 算法都是将 value 映射到一个 32 为的 key 值,也即是 0~2^32-1 次方的 数值空间;我们可以将这个空间想象成一个首( 0 )尾( 2^32-1 )相接的圆环。

2.把需要缓存的内容(对象)映射到 hash 空间

2. 接下来考虑 4 个对象 object1~object4 ,通过 hash 函数计算出的 hash 值 key 在环上的分 布

3.把服务器(节点)映射到 hash 空间

3. Consistent hashing 的基本思想就是将对象和 cache 都映射到同一个 hash 数值空间中,并 且使用相同的 hash 算法。一般的方法可以使用 服务器(节点) 机器的 IP 地址或者机器名作为 hash 输入。

4.把对象映射到服务节点

4. 现在服务节点和对象都已经通过同一个 hash 算法映射到 hash 数值空间中了,首先确定对象 hash 值在环上的位置,从此位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位 到的服务器。

考察 cache 的变动

5. 通过 hash 然后求余的方法带来的最大问题就在于不能满足单调性,当 cache 有所变动时, cache 会失效。

5.1 移除 cache:考虑假设 cache B 挂掉了,根据上面讲到的映射方法,这时受影响的将仅是 那些沿 cache B 逆时针遍历直到下一个 cache ( cache C )之间的对象。

5.2 添加 cache:再考虑添加一台新的 cache D 的情况,这时受影响的将仅是那些沿 cache D 逆时针遍历直到下一个 cache 之间的对象,将这些对象重新映射到 cache D 上即可。

虚拟节点

hash 算法并不是保证绝对的平衡,如果 cache 较少的话,对象并不能被均匀的映射到 cache 上, 为了解决这种情况, consistent hashing 引入了“虚拟节点”的概念,它可以如下定义: 虚拟节点( virtual node )是实际节点在 hash 空间的复制品( replica ),一实际个节点对应了 若干个“虚拟节点”,这个对应个数也成为“复制个数”,“虚拟节点”在 hash 空间中以 hash 值排列。

仍以仅部署 cache A 和 cache C 的情况为例。现在我们引入虚拟节点,并设置“复制个数”为 2 , 这就意味着一共会存在 4 个“虚拟节点”, cache A1, cache A2 代表了 cache A; cache C1, cache C2 代表了 cache C 。此时,对象到“虚拟节点”的映射关系为:

objec1->cache A2 ; objec2->cache A1 ; objec3->cache C1 ; objec4->cache C2 ;

因此对象 object1 和 object2 都被映射到了 cache A 上,而 object3 和 object4 映射到了 cache C 上;平衡性有了很大提高。

引入“虚拟节点”后,映射关系就从 { 对象 -> 节点 } 转换到了 { 对象 -> 虚拟节点 } 。查询物体所在cache 时的映射关系如下图 所示。


Java核心知识点整理大全-笔记_希斯奎的博客-CSDN博客

Java核心知识点整理大全2-笔记_希斯奎的博客-CSDN博客

Java核心知识点整理大全3-笔记_希斯奎的博客-CSDN博客

Java核心知识点整理大全4-笔记-CSDN博客

Java核心知识点整理大全5-笔记-CSDN博客

Java核心知识点整理大全6-笔记-CSDN博客

Java核心知识点整理大全7-笔记-CSDN博客

Java核心知识点整理大全8-笔记-CSDN博客

Java核心知识点整理大全9-笔记-CSDN博客

Java核心知识点整理大全10-笔记-CSDN博客

Java核心知识点整理大全11-笔记-CSDN博客

Java核心知识点整理大全12-笔记-CSDN博客

Java核心知识点整理大全13-笔记-CSDN博客

Java核心知识点整理大全14-笔记-CSDN博客

Java核心知识点整理大全15-笔记-CSDN博客

Java核心知识点整理大全16-笔记-CSDN博客

Java核心知识点整理大全17-笔记-CSDN博客

Java核心知识点整理大全18-笔记-CSDN博客

Java核心知识点整理大全19-笔记-CSDN博客

Java核心知识点整理大全20-笔记-CSDN博客

Java核心知识点整理大全21-笔记-CSDN博客

往期快速传送门👆:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/229682.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

好用的chatgpt工具用过这个比较快

chatgpthttps://www.askchat.ai?r237422 chatGPT能做什么 1. 对话和聊天&#xff1a;我可以与您进行对话和聊天&#xff0c;回答您的问题、提供信息和建议。 2. 问题回答&#xff1a;无论是关于事实、历史、科学、文化、地理还是其他领域的问题&#xff0c;我都可以尽力回答…

使用netconf配置华为设备

实验目的&#xff1a; 公司有一台CE12800的设备&#xff0c;管理地址位172.16.1.2&#xff0c;现在需要编写自动化脚本&#xff0c;通过SSH登陆到设备上配置netconf协议的用户名&#xff0c;密码以及netconf服务&#xff0c;并且通过netconf协议将设备的loopback0接口IP地址配…

【数据结构/C++】栈和队列_链栈

链头 栈顶。 #include<iostream> using namespace std; // 链栈 typedef int ElemType; typedef struct Linknode {ElemType data;struct Linknode *next; } *LiStack; // 初始化 void InitLiStack(LiStack &S) {S (LiStack)malloc(sizeof(struct Linknode));S->…

uniapp上架app store详细攻略

​ 目录 uniapp上架app store详细攻略 前言 一、登录苹果开发者网站 二、创建好APP 前言 uniapp开发多端应用&#xff0c;打包ios应用后&#xff0c;会生成一个ipa后缀的文件。这个文件无法直接安装在iphone上&#xff0c;需要将这个ipa文件上架app store后&#xff0c;才…

神器!使用 patchworklib 库进行多图排版真棒啊

如果想把多个图合并放在一个图里&#xff0c;如图&#xff0c;该如何实现 好在R语言 和 Python 都有对应的解决方案&#xff0c; 分别是patchwork包和patchworklib库。 推介1 我们打造了《100个超强算法模型》&#xff0c;特点&#xff1a;从0到1轻松学习&#xff0c;原理、…

【Spring日志】

一.日志作用 1.定位和发现问题 这是日志的主要用途,通过查看日志,我们可以定位问题发生的位置,从而快速的发现问题,分析问题. 2.系统监控 监控几乎是一个成熟系统的标配,我们可以通过日志记录这个系统的运行状态,比如记录方法的响应时间,响应状态,通过设置不同的规则,超过阈值就…

YOLOv8独家原创改进:自研独家创新MSAM注意力,通道注意力升级,魔改CBAM

💡💡💡本文自研创新改进:MSAM(CBAM升级版):通道注意力具备多尺度性能,多分支深度卷积更好的提取多尺度特征,最后高效结合空间注意力 1)作为注意力MSAM使用; 推荐指数:五星 MSCA | 亲测在多个数据集能够实现涨点,对标CBAM。 在道路缺陷检测任务中,原始ma…

NetCat(NC)详细教程

一.NetCat介绍 1995年第一个版本公布&#xff0c;NetCat是一个非常简单的Unix工具&#xff0c;可以读、写TCP或UDP网络连接(network connection)。它被设计成一个可靠的后端(back-end)工具&#xff0c;能被其它的程序程序或脚本直接地或容易地驱动。同时&#xff0c;它又是一个…

初探HarmonyOS路由跳转

最近的鸿蒙新闻也是很大声势&#xff0c;鸿蒙的纯血版一出&#xff0c;各大互联网大厂都坐不住了&#xff0c;纷纷加入其中。这意味鸿蒙将来会取代大部分Android用户&#xff0c;这也是程序员的一篇大好前程。如今的Android开发行业已经夕阳西下了。 网上有关HarmonyOS的资料几…

docker-compose Foxmic dt版

Foxmic dt 版前言 实现企业对资产的基本管理,包含对资产的登记、维修、调拨、转移等基本功能的支持,并提供对资产的耗材、库存进行管理,有完善的组织架构,非常适合中小企业的需求系统整体覆盖了基本的资产管理、合同管理、运维服务、运维服务、数据中心设备管理等多个模块。…

神经内镜市场分析:全球市场规模及市场份额、行业现状、市场发展

神经内镜是一种用于检查和执行中枢神经系统各种干预措施的内窥镜&#xff0c;也是内镜神经外科手术中进行观察和操作的工具。神经内镜手术具有高清晰视野、抵近观察的优越特性&#xff0c;同时由于其对正常脑组织结构造成的损伤小&#xff0c;并发症发生率较低&#xff0c;且治…

开发定制化抖音票务小程序的技术解析

通过定制化抖音票务小程序&#xff0c;可以为用户提供更加个性化的活动体验&#xff0c;同时也为企业和品牌提供了更多的营销机会。 一、小程序开发框架的选择 在开发定制化抖音票务小程序之前&#xff0c;选择合适的小程序开发框架至关重要。目前&#xff0c;主流的小程序框…